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Summary
Background Sleep and circadian rhythm disruptions are common in patients with mood disorders. The intricate
relationship between these disruptions and mood has been investigated, but their causal dynamics remain unknown.

Methods We analysed data from 139 patients (76 female, mean age = 23.5 ± 3.64 years) with mood disorders who
participated in a prospective observational study in South Korea. The patients wore wearable devices to monitor sleep
and engaged in smartphone-delivered ecological momentary assessment of mood symptoms. Using a mathematical
model, we estimated their daily circadian phase based on sleep data. Subsequently, we obtained daily time series for
sleep/circadian phase estimates and mood symptoms spanning >40,000 days. We analysed the causal relationship
between the time series using transfer entropy, a non-linear causal inference method.

Findings The transfer entropy analysis suggested causality from circadian phase disturbance to mood symptoms in
both patients with MDD (n = 45) and BD type I (n = 35), as 66.7% and 85.7% of the patients with a large dataset (>600
days) showed causality, but not in patients with BD type II (n = 59). Surprisingly, no causal relationship was sug-
gested between sleep phase disturbances and mood symptoms.

Interpretation Our findings suggest that in patients with mood disorders, circadian phase disturbances directly
precede mood symptoms. This underscores the potential of targeting circadian rhythms in digital medicine, such as
sleep or light exposure interventions, to restore circadian phase and thereby manage mood disorders effectively.
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Introduction
Sleep and circadian rhythm are tightly intertwined,1 and
their disruptions are commonly observed in patients
with major depressive disorder (MDD) and bipolar dis-
order (BD).2 For instance, during depressive episodes in
both patients with MDD and those with BD, insomnia
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or hypersomnia is prevalent,3,4 while a reduced need for
sleep is a prominent feature of manic and hypomanic
episodes.5,6 Patients with MDD typically have lower
amplitude on circadian rhythms of locomotor activity,
body temperature, norepinephrine, thyroid stimulating
hormone, and melatonin levels.7,8 Furthermore,
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Research in context

Evidence before this study
We searched PubMed for studies on September 15, 2023,
using the search (“mood disorder” [Title] OR “depression”
[title] OR “bipolar” [title]) AND (“circadian rhythm” OR
“circadian” OR “chronobiology” OR “chronobiological”). While
prior studies suggest a robust association between circadian
rhythms and mood disorders, the precise role of circadian
systems in relation to mood disorders remains unclear.
Among various aspects of circadian rhythms, circadian phase
is notably recognised for its substantial impact on mood
disorders. Earlier research has indicated a strong association
between delayed sleep phases and late chronotype with mood
disorders. Recent investigations have explored individual
sleep-wake patterns and their impact on the course of mood
disorders using wearable devices. However, these studies have
often failed to consider internal circadian rhythms fully. In a
noteworthy study that measured rhythms of circadian gene
expression and salivary cortisol, patients with bipolar disorder
exhibited 4–5 h delayed rhythms during their depressive
episodes and 7 h advanced rhythms (equivocal to 17 h
delayed) during manic episodes. Notably, these rhythms were
normalised following the treatment of mood episodes.
Nevertheless, our understanding of the direction of the causal
relationship between changes in circadian phase and
individual mood at the personal level remains limited.

Added value of this study
We analysed causal relationships between real-world time
series data of sleep/circadian phase estimates and mood
symptoms, encompassing an average of 290 days. The
acquisition of such extensive real-world data was possible by
introducing a mathematical model for circadian phase

estimation, as well as through advancements in wearable
devices and smartphones. This extended dataset enabled
robust causality analysis based on transfer entropy, a method
capable of capturing non-linear relationships overlooked by
conventional approaches like Granger causality. Our findings
unveiled a crucial distinction: It was not sleep but circadian
phase disruptions that preceded variations in mood
symptoms among individuals with MDD and BDI.
Furthermore, exploring the dynamic disparities between sleep
and circadian phases provided insights into the complex
causal dynamics, thus deepening our comprehension of the
intricate interplay among sleep, circadian rhythms, and mood
disorders.

Implications of all the available evidence
This study explores the complex interplay between sleep
disturbances, circadian rhythms, and mood disorders,
shedding light on the challenging task of establishing
evidence in support of causality. We have elucidated the
evidence supporting a causal relationship, aligning with
the accumulating body of research in this area. Moreover, the
methodology employed to achieve this breakthrough,
harnessing mobile apps, wearable technology, and a
mathematical model, represents a significant advancement in
the real-time assessment of mood episode risks. This, in turn,
holds promise for timely interventions focused on regulating
circadian rhythms. Such interventions could usher in an
innovative approach to the treatment of mood disorders,
distinguishing them from conventional digital therapeutics
that primarily offer standardised forms of behavioural
therapy.
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abnormalities in the peak time and amount of mela-
tonin secretion have been observed in patients with
BD.9–12 Additionally, genetic evidence points to a strong
relationship between susceptibility to mood disorders
and circadian genes, such as CLOCK and TIM.13,14

Among the various types of sleep and circadian dis-
turbances, phase disturbances are gaining attention in
relation to mood disorders. For instance, social jetlag,
determined by the difference between mid-sleep time
during weekdays and weekends, positively correlated
with depressive symptoms.15 Both patients with MDD
and BD often exhibit a preference for an evening chro-
notype.16,17 Phase angle difference between the circadian
phase and desired bedtime was associated with
depressive severity in individuals with delayed sleep-
wake phase disorder.18 In seasonal affective disorder,
phase delay in circadian rhythms was associated with
depression.19–21 Similar associations between circadian
misalignment and depression severity have been
observed in non-seasonal depression.22 Furthermore,
circadian phase advancement in acute manic episodes
and circadian phase delay in acute mixed and depressive
episodes were reported among patients with BD.23

These circadian phase changes were normalised after
treating the patients with BD. While strong associations
between mood disorders and disturbances in sleep and
circadian phases have been found, the causal relation-
ship between these disturbances and mood remains
elusive24–27 (Fig. 1). For instance, sleep or circadian
phase disruptions could lead to mood disturbances, or it
could be the other way around.

While the causal relationship between circadian/
sleep phase disturbance and mood can be inferred from
their temporal sequences,28 their longitudinal moni-
toring has rarely been performed in existing studies.
Fortunately, the widespread usage of smartphones and
wearable devices has facilitated the collection of
continuous sleep and mood information over extended
periods during longitudinal studies.29,30 However, unlike
the sleep phase, direct measurement of the circadian
phase in humans is costly and possible only under
limited conditions, making it nearly impossible to
www.thelancet.com Vol 103 May, 2024
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Fig. 1: Causal relationships between sleep or circadian phase disturbance and mood disorders remain unclear. Sleep and circadian phase
disturbances are associated with feeling depressed, lack of interest, tiredness, poor concentration and irritability, contributing to the devel-
opment of mood disorders such as depression and bipolar disorder. However, the details of the causation between these factors are not yet fully
understood. In particular, sleep-wake cycle disturbance may directly contribute to mood variations of patients with mood disorders or
contribute indirectly through circadian phase disturbance. Conversely, mood variations themselves may disturb sleep and/or circadian phase.
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acquire long-term time series data.31 An alternative
approach is indirectly estimating the circadian phase
with mathematical models and wearable devices.32–35

These models describe how the circadian rhythm
responds to light exposure. Applying these models to
light exposure data continuously obtained or inferred
from wearable devices makes it possible to simulate the
long-term evolution of the circadian rhythm, thereby
generating a time series of the long-term estimates of
circadian phase. Among currently known computational
approaches in field settings, such as multiple regression
models and artificial neural network models, this
approach is considered the most effective36 and has been
widely accepted in various studies to track circadian
dynamics.32,36–40

Previous studies have explored the temporal associ-
ation and causal relationship between sleep and mood
states using autoregressive models or Granger causal-
ity.41,42 However, these approaches assume a linear
relationship between the time series,28 which may not be
suitable when considering mood states such as depres-
sive, elevated, and mixed moods. To better understand
their causal dynamics, employing a non-linear causal
inference method such as transfer entropy (TE) is
essential.43,44 TE quantifies the reduction in uncertainty
when predicting the future state of one process based on
the knowledge of the current and past states of another
process. As a deliberately asymmetric measure, TE is
frequently employed to deduce the directionality of in-
formation flow and, consequently, the causal
www.thelancet.com Vol 103 May, 2024
relationship between the two processes.28,45 TE has been
proposed as an effective tool for investigating causality
within complex systems, especially in computational
neuroscience,44,46–48 and in physiological systems such as
cardiorespiratory interactions.49–53 In particular, TE has
also been employed to analyse electroencephalogram
signals in individuals with mood disorders.54–56

In this study, we aimed to elucidate the direction of
causality between circadian/sleep phase disturbances
and mood symptoms in patients with mood disorders.
We collected information on sleep and subjective mood
symptoms over several hundred days using wearable
devices and mobile applications. In addition, using a
mathematical model, we estimated the daily circadian
phase based on the collected sleep data, which indirectly
informs the light exposure of patients. This process
allowed us to extract time series data of circadian and
sleep phase estimates as well as mood symptoms, with
an average length of 290 days, from 139 patients with
mood disorders. Subsequently, we performed causal
inference between these time series using TE, which
enabled us to consider the non-linear nature of
depressive, elevated, and mixed moods. The analysis
suggested causality from circadian phase disturbance to
mood symptoms in patients with MDD and BD type I
(BDI) but not in patients with BD type II (BDII).
However, no causal relationship was suggested between
sleep phase disturbance and mood symptoms. Our
findings propose that in patients with mood disorders, it
is not the sleep phase disturbances but the circadian
3

http://www.thelancet.com


Articles

4

phase disturbance that directly precedes variations in
mood symptoms. Furthermore, circadian phase
disruption could trigger the relapse of mood episodes
and, therefore, is a potential target of mood disorder
treatment.
Methods
Recruitment
The data used in this study were collected from the
Mood Disorder Cohort Research Consortium
(MDCRC), a multicenter prospective observational
cohort study on early-onset mood disorders in South
Korea (ClinicalTrials.gov: NCT03088657).57,58 Detailed
study design and protocol information can be found in
a previous publication.57 In the original cohort study,
495 patients were recruited from March 2015 to April
2019, on a convenience basis, from both outpatient
clinics and psychiatric wards. The inclusion criteria
were being of an age <35 years and treated for less than
two years with the diagnosis of mood disorders (MDD,
BDI, and BDII) or age <25 years and diagnosed with
mood disorders. Individuals with evidence of intellec-
tual disabilities, organic brain injury, or difficulties
with the Korean language were excluded. Most patients
were on medications, and this study did not affect their
ongoing treatment. Sex identification was self-reported
by study participants and eligible patients were all
encouraged to participate without restriction on sex.
The study received approval from the Institutional
Review Boards of all participating hospitals
(2015AN0239) and was conducted following the
Declaration of Helsinki. All participants provided
written informed consent before enrollment after
receiving a thorough explanation of the study.

Assessment
The patients were diagnosed by a psychiatrist using the
Mini-International Neuropsychiatric Interview. They
completed clinical scales, including the Montgomery-
Asberg Depression Rating Scale (MADRS) and Young
Mania Rating Scale (YMRS). Furthermore, the patients
were instructed to engage in daily smartphone-delivered
ecological momentary assessment (EMA) of mood
symptoms. The EMA questionnaire comprised two
types of mood symptoms: depressed and elevated. Pa-
tients recorded their daily mood by rating both
depressed and elevated moods on a scale ranging from
0 (not at all) to 3 (extremely). The patients were
instructed to check both poles to identify a mixed state
of mood state if their mood fluctuated frequently
throughout the day or if they felt both elevated and
depressed. The patients were encouraged to complete
the questionnaire at the end of each day to record their
overall daily mood symptoms, with a reminder text
message sent to all patients at 9 pm daily. The patients
were also asked to wear a wearable activity tracker every
day (Fitbit Charge HR, 2 or 3, Fitbit Inc.), which records
their sleep patterns.

Participants
Among 495 patients enrolled in the MDCRC study, 270
patients providing more than 30 days of lifelog data
collected from wearable devices were initially included
in the analysis. We excluded any missing instances after
aligning the extracted estimates of daily sleep/circadian
phase data with the corresponding mood symptoms
data. Subsequently, we excluded 110 patients from the
analysis whose processed data covered fewer than 28
days, excluding the initial 14 days’ data. Additionally, 20
patients were excluded due to their low mood symptom
variation. The exclusions were necessary for ensuring
the reliable estimation of TE (see the following two
sections for details). Finally, one patient was excluded
from the analysis due to a change in diagnosis during
follow-up evaluations of psychotic disorder. As a result,
the final analysis was conducted with 139 patients.

Sleep/circadian phase estimates and mood
symptoms extraction
To extract sleep and circadian phase information
from the data collected using wearable devices, we
analysed the sleep duration and timing (Fig. 2a). We
determined the midpoint of each patient’s daily main
sleep period (Midsleep), a valuable measure for assess-
ing the sleep phase.59,60 The main sleep period of each
day was identified as the most extended continuous
period of sleep that overlapped with that specific day.
Furthermore, we utilised a light-based circadian pace-
maker model (Forger model)61 to predict the daily
DLMO, a widely recognised biomarker of the circadian
phase. Specifically, the model simulates the core body
temperature rhythm, predicting the core body temper-
ature nadir (CBTmin). As CBTmin is known to occur
7 h after DLMO,62,63 we can predict DLMO using the
model simulations. This approach is substantiated by
findings from several preceding studies where mathe-
matical models were validated for predicting circadian
phases.32–35 In particular, the Forger model demon-
strated comparable accuracy to other validated models.35

The applicability of the Forger model to describe circa-
dian rhythm dynamics is further highlighted by its
integration into sleep-cycle models, effectively eluci-
dating the alertness dynamics arising from circadian
rhythm.37,38

To simulate the Forger model, we inferred the light
input based on the sleep-wake pattern, using 250 lux for
wakefulness and 0 lux otherwise, based on previous
studies.35,64 Specifically, one recent study demonstrated
that a light proxy, which includes five light intensity
levels (0, 100, 200, 500, and 2000 lux) based on activity
levels, leads to more accurate circadian phase prediction
for shift workers compared to actual data collected from
wearable devices.35 Moreover, another study indicated
www.thelancet.com Vol 103 May, 2024
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Fig. 2: A framework for determining the causal relationship between sleep/circadian phase disturbance and mood variation. (a) Sleep
information, including duration and timing, was collected from mood disorder patients via wearable devices. The midpoint of the patient’s daily
sleep period (Midsleep) is used as a measurement of the sleep phase. A mathematical model is applied to the collected data to predict the daily
Dim Light Melatonin Onset (DLMO), a golden standard biomarker of the circadian phase. (b) Self-reported information on the individual’s
emotional state was collected via a mobile survey app. The daily emotional states (Mood) are assessed as feeling low or high on a scale ranging
from 0 to 3 and further classified into three categories: normal (N; both are 0), depressed (D; only feeling low is >0), and elevated or mixed (E;
otherwise). (c) The causal relationship between the two daily time series (i.e., between Midsleep/DLMO and Mood) was determined via transfer
entropy (TX→Y ) (i). TX→Y measures how much the uncertainty of the future state of the target variable (Y) reduces by knowing the past values of
X (i.e., H(Yt+1|Yt) − H(Yt+1|Xt, Yt)). In order to handle biases of transfer entropy due to limited data size, surrogate testing is performed (ii).
Specifically, X is randomly permuted (Xσ ), and a transfer entropy value is computed (TXσ→Y). This is repeated 1000 times to generate a dis-
tribution of transfer entropy and determine the threshold (T∗), making the proportion of TXσ→Y exceeding T∗ by 5%. If the transfer entropy of
the original data (TX→Y ) exceeds T∗, causation from X to Y is detected; otherwise, no causation (iii).

Articles
that using 250 lux instead of the other positive light
intensities does not significantly affect the simulation
results of the Forger model.38 Therefore, employing
such two-level light input can effectively predict circa-
dian phase and applies to data collected with the Fitbit
Charge, known for its comparable accuracy in sleep
evaluation compared to actigraphy.65

The initial conditions of the simulations were
determined individually, assuming that each
www.thelancet.com Vol 103 May, 2024
individual’s average midsleep time during the first
seven days corresponded to the initial CBTmin. This
approach is based on a prior study that demonstrated
high accuracy in predicting circadian phase for shift
workers.33 To further mitigate the impact of uncertainty
in the initial conditions, we excluded estimated DLMO
from the first two weeks. Additionally, we excluded
Midsleep from the first two weeks for pair comparisons
with DLMO.
5

http://www.thelancet.com


Articles

6

From the collected daily mood symptoms data
(measured by the EMA), we obtained time series data on
daily mood symptoms (Mood) (Fig. 2b). Specifically, the
quantified pairs of feeling depressed and elevated on a
scale of 0–3 were classified into three categories: normal
(N) when both poles are 0, depressed (D) when only
depressed mood is greater than 0, and elevated or mixed
(E) for all other cases.

Each day’s Midsleep or DLMO data was paired with
corresponding Mood data. The days without Midsleep/
DLMO or Mood data due to data missing or absence of
sleep period were excluded from the time series (see
Tables S1–S3 for the time series lengths). Notably,
DLMO can be estimated for the day without any sleep
period, unlike Midsleep. Thus, the lengths of DLMO
and Midsleep can differ, but the difference is at most 11
days.

Causal inference between sleep/circadian phase
estimates and mood symptoms time series
The causal relationship between the two daily time se-
ries, namely Midsleep/DLMO and Mood, was investi-
gated using TE (Fig. 2c (i)), which was found to be more
precise and visually interpretable than Granger causal-
ity.66 TE quantifies the amount by which the uncertainty
of the future state of the target variable (Y ) decreases
when the previous day’s value of the source variable (X )
is known. It is computed as the difference between the
two conditional entropies H(Yt+1|Yt) and H(Yt+1|Xt,Yt).
Here, H(Yt+1|Yt) evaluates the amount of information
that remains in the next day’s state of Y (Yt+1) given the
knowledge of its current value (Yt). Intuitively, this
captures the average uncertainty or surprise linked to
the outcome of Y when its preceding value is available.
IfH(Yt+1|Yt) is high and low, knowing the current value
(Yt) provides large and small amounts of information
about future value (Yt+1), respectively. Analogously,
H(Yt+1|Xt,Yt) measures the amount of information
remaining in the future state of Y (Yt+1) when the cur-
rent values of both X (Xt) and Y (Yt) are known. A
positive TE indicates that the current value of X con-
tributes valuable information for predicting the future of
Y . Conversely, if it approaches zero, it implies that
knowledge of the current values of X does not sub-
stantially augment the information obtained from the
current values of Y alone. See Supplementary Infor-
mation for a detailed illustrative calculation of TE.

Theoretically, a TE value of 0 indicates the absence of
a causal relationship between two variables. Thus, pre-
vious studies have employed the positivity of TE as a
criterion to detect causation.44,67–69 However, this
approach lacks reliability because it disregards confi-
dence or statistical significance testing. To address this
limitation, a statistical test for TE has recently been
developed and incorporated into an R package, widely
used for inference.70 This approach, known as the
Markov block bootstrap, requires the reconstruction of
the Markov chain transition matrix for each variable to
generate sample time series of the two variables without
any causality. It is important to note that the reliability of
this statistical test has been questioned due to the need
for a large dataset and high data variability, particularly
when the data has numerous categories or states.44 To
address these concerns, we employed a bin size of three
for both source and target time series to reduce the
number of states, aiming to enhance the robustness of
the analysis. We also considered only 159 patients with
MDD and BD among 495 patients whose data size (i.e.,
length of the time series) was larger than 27, excluding
the initial two weeks’ data (see the sleep/circadian phase
estimates and mood symptom extraction section for
details). The 27-day threshold represents the minimum
data size required to cover all states in the joint proba-
bility of the current target state, the previous day’s target
state, and the previous day’s source state (i.e., (bin
size)3 = 27), which is essential for calculating transfer
entropy. Moreover, 20 patients whose Mood variations
were below 0.05 were excluded when assigning 0 and 1
to the normal and the other states (see Tables S1–S3 for
the mood variation of the included data).

Despite implementing precautions, it was observed
that the current algorithm for predicting causation still
yielded statistically significant results when applied to
randomised DLMO time series, which should not
exhibit any causation (Fig. S1 for details). To overcome
this false-positive prediction, we employed an alternative
approach that does not involve the reconstruction of the
Markov chain transition matrix. Specifically, we per-
formed surrogate testing (Fig. 2c (ii)), which involves
randomly permuting the variable X (X σ), and calculating
the TE value (TXσ→Y ). This process is repeated 1000
times to generate a distribution of TE values. From this
distribution, a threshold value (T∗) is determined such
that the proportion of TXσ→Y exceeding T∗ is 5%. To
determine the presence of causation from X to Y , the TE
of the original data (TX→Y ) is compared to T∗ (Fig. 2c
(iii)). If TX→Y surpasses T∗, it indicates the detection of
causation from X to Y . Conversely, if TX→Y falls below
T∗, it suggests the absence of causation between the
variables. When applying this statistical test to the
randomised DLMO data, we observed a significantly
reduced number of cases where causation was detected
compared to the previous statistical test method (Fig. S1
for details). This demonstrates the improved accuracy
and reliability of the alternative approach in dis-
tinguishing between actual causation and random fluc-
tuations in the data.

Quantification and statistical analysis
Statistical analysis of study patients’ demographic and
clinical characteristics was performed using R software
(version: 4.3.2, http://www.R-project.org). Measurement
data are expressed as the mean ± standard deviation and
compared between three diagnostic groups using
www.thelancet.com Vol 103 May, 2024
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analysis of variance. Categorical data are represented as
frequencies and percentages (%) and compared between
three diagnostic groups using the chi-square test and
Fisher’s exact test when the value in any of the cells is
below five. The annualised relapse rate is calculated with
counts of relapse as the numerator and person-years of
observation as the denominator. Estimated DLMO and
midsleep are expressed as the median and interquartile
range. For sleep and DLMO estimation, the data pre-
processing was performed with MATLAB 2021a software
(Natick, MA, USA). The simulations of the mathematical
model to estimate the DLMO were performed using
ode15s solver in MATLAB. The TE analysis was per-
formed using RTransferEntropy package for R.

Role of the funding sources
The funder played no role in study design, data collec-
tion, analysis and interpretation of data, or the writing of
this manuscript.
Results
Among a total of 139 patients included in the analysis,
45 (32.4%) were diagnosed with MDD, 35 (25.2%) had
BDI, and 59 (42.4%) had BDII. The obtained time series
spanned 29 to 1457 days (mean ± standard deviation
(SD) = 290± 297; see Tables S1–S3 for details). Table 1
presents the patients’ baseline demographic and clin-
ical characteristics, including their baseline symptoms,
comorbidities, and medications. Age, sex, MADRS, and
data size exhibited no differences among the three
groups, whereas YMRS varied between groups, reflect-
ing their respective diagnoses. The post-hoc analysis
indicated a significantly higher baseline YMRS score in
BDI compared to MDD, with consideration for Bon-
ferroni’s correction. The prevalence of comorbidities,
including anxiety disorder, substance use disorder,
obsessive-compulsive and related disorder, eating dis-
order, and posttraumatic stress disorder, did not show
differences between groups. However, medications
differed between groups, reflecting diagnostic differ-
ences, except lithium. Specifically, pairwise comparison
with Bonferroni correction revealed that patients with
BD used mood-stabilising anticonvulsants more
frequently and antidepressants less frequently than pa-
tients with MDD. The mean ± SD age of patients with
MDD, BDI, and BDII were 23.3 ± 3.9, 24.7 ± 4.4, and
23.0 ± 2.7 years, respectively. The number (percentage)
of patients whose mood episodes recurred during the
data requisition period were 21 (47%), 23 (66%), and 40
(68%) in MDD, BDI, and BDII, respectively. The mean
± SD durations of data were 266 ± 238, 360 ± 391, and
267 ± 271 days in MDD, BDI, and BDII, respectively.
The annualised relapse rates of mood episode recur-
rence per person-year were as follows: major depressive
episodes, 0.48, 0.53, and 0.73 in MDD, BDI, and
BDII, respectively; manic episodes, 0.28 in BDI, and
www.thelancet.com Vol 103 May, 2024
hypomanic episodes; 0.15 and 0.33 in BDI and BDII,
respectively.

TE analysis suggests the causality between
circadian phase disturbance and mood symptoms
We examined the percentages of patients demonstrating
causal relationships (% of causality) of each direction
within each diagnostic group of MDD, BDI, and BDII
(Fig. 3). In particular, we investigated how the % of
causality changes as the data size increases, and thus TE
estimation becomes more reliable.44 Thus, the increase
in the % of causality as the data size increases can be
used as the criteria for the reliability of causality.

As the data size grew from 0, 100 to 200, …, and 600
days for patients with MDD (Fig. 3a) and BDI (Fig. 3b),
the % of causality of DLMO to Mood exhibited a pro-
gressive increase. In particular, when considering only
patients with a data size larger than 600 days, the % of
causality reached 66.7% and 85.7% for patients with
MDD and BDI, respectively. However, the opposite di-
rection (Mood to DLMO) showed a consistently low % of
causality (Fig. 3d and e), never exceeding 17% regard-
less of data size. In particular, no causality fromMood to
DLMO was observed for MDD. The % of causality of
Midsleep to Mood also showed a gradual increase with
larger data sizes both for patients with MDD (Fig. 3g)
and those with BDI (Fig. 3h). However, this increase
was not as pronounced as that of DLMO to Mood, with
the % of causality never exceeding 43% in all cases. As
for Mood to Midsleep causality, it was nearly 0%
regardless of the data size in both patients with MDD
(Fig. 3j) and those with BDI (Fig. 3k). Taken together,
the analysis suggests strong evidence supporting cau-
sality from DLMO to Mood in patients with MDD and
BDI, indicating that the circadian phase exerts a more
prominent influence on mood symptoms in these
diagnostic groups. Conversely, Midsleep did not exhibit
such robust evidence supporting a causal relationship
with Mood, suggesting a comparatively weaker impact.

On the other hand, patients with BDII displayed a
different pattern. The % of causality of DLMO to Mood
(Fig. 3c) did not progressively increase with larger data
sizes, never exceeding 37%. Additionally, the % of
causality from Mood to DLMO (Fig. 3f) was nearly 0%
regardless of the data size. Similarly, the % of causality
of Midsleep to Mood (Fig. 3i) did not show a clear
increasing pattern, with the % of causality never
exceeding 37%, and that of Mood to Midsleep (Fig. 3l)
was 0% for all the data sizes. These findings suggest a
less pronounced causal relationship between DLMO/
Midsleep and Mood in patients with BDII, possibly
influenced by other factors (see Discussion for details).

Given the utilisation of estimated DLMO through a
mathematical model, it is crucial to consider the po-
tential impact of prediction errors on our previous
analysis of the causal relationship between DLMO
and Mood. To address this concern, we deliberately
7
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Characteristics Diagnosis p

MDD n = 45 BDI n = 35 BDII n = 59

Demographic characteristics

Age at baseline, years, mean (SD) 23.3 (3.92) 24.7 (4.37) 23.0 (2.74) 0.62

Sex, n (%) 0.054

Female 18 (40%) 22 (63%) 36 (61%)

Male 27 (60%) 13 (37%) 23 (39%)

Clinical characteristics

Baseline clinical scales

MADRS 18.3 (11.1) 10.7 (10.1) 17.4 (10.6) 0.86

YMRS 1.22 (2.15) 2.37 (3.33) 3.19 (3.64) <0.05

Comorbidities

Anxiety disorder 15 (33%) 5 (14%) 21 (36%) 0.065

Substance use disorder 2 (4.4%) 3 (8.6%) 2 (3.4%) 0.54

OC and related disorder 2 (4.4%) 2 (5.7%) 10 (17%) 0.10

Eating disorder 1 (2.2%) 1 (2.9%) 5 (8.5%) 0.37

PTSD 2 (4.4%) 0 5 (8.5%) 0.22

Somatic symptom and related disorder 1 (2.2%) 0 1 (1.7%) 1

Medications

Lithium 13 (29%) 19 (54%) 26 (44%) 0.065

Anticonvulsants 10 (22%) 19 (54%) 31 (53%) <0.05

SSRIs 26 (58%) 1 (2.9%) 10 (17%) <0.01

Other antidepressants 18 (40%) 0 8 (14%) <0.01

Annualised relapse rate (person-year)

MDEs 0.48 0.53 0.73

MEs 0.28

HMEs 0.15 0.33

Sleep measures and circadian estimates

Data size, days, mean (SD) 266 (238) 360 (391) 267 (271) 0.89

Estimated DLMO, hour, median (IQR) 23.1 (22.0–24.3) 22.2 (21.2–23.3) 23.0 (21.7–24.6)

Midsleep, hour, median (IQR) 5.02 (3.70–6.97) 4.14 (2.92–5.67) 4.96 (3.37–7.05)

Data are expressed as mean (standard deviation), number (%), number per year per person or median (interquartile range). Analysis of variance was applied to test for age
and data size. Categorical variables were compared using the chi-square test and Fisher’s exact test. MDD Major depressive disorder, BDI bipolar I disorder, BDII bipolar II
disorder, MADRS Montgomery-Asberg Depression Rating Scale, YMRS Young Mania Rating Scale, OC obsessive-compulsive, PTSD posttraumatic stress disorder, MDE major
depressive episode, ME manic episode, HME hypomanic episode, DLMO, dim light melatonin onset, IQR, interquartile range.

Table 1: Demographic and clinical characteristics of study participants.
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introduced random Gaussian noise into the DLMO time
series, mirroring the level of prediction error encoun-
tered. Subsequently, we applied transfer entropy anal-
ysis to investigate this impact. The magnitude of the
noise was determined based on a prior validation study
of the mathematical modelling approach.33 Specifically,
the predicted circadian phase shows a linear correlation
with the measured values, while the slope is not pre-
cisely one. As the current transfer entropy analysis is
insensitive to the scaling of the time series, we can re-
gard the residual error of the linear model between
predicted and measured circadian phases as the pre-
diction error. From the previously reported r-squared
values and the SDs of the measured circadian phases in
the previous study,33 we calculated that the SD of the
random noise required to be added to the current
DLMO time series is ∼0.3 h for day shifts and ∼0.6 h for
night shifts. Noise of SD 0.6 h was added to the day with
a night-shift-like sleep phase, where the Midsleep falls
between 10 am and 3 pm, while noise of SD 0.3 h was
added to the other days.

This process was repeated 20 times, and we calcu-
lated the mean and standard deviation of the % of
causality (Fig. S3). Interestingly, as we introduced
random noise, the % of causality from DLMO to Mood
in patients with MDD remained relatively consistent,
while in patients with BDI, it exhibited a significant
decrease. However, the overall increasing trend with
increasing thresholds persisted. Moreover, these values
continued to be notably higher than the % of causality
from Mood to DLMO. Importantly, even in this added
random noise, the % of causality from DLMO to Mood
remained comparable to or even exceeded those
observed for Midsleep to Mood (Fig. 3). This suggests
www.thelancet.com Vol 103 May, 2024
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Fig. 3: Only causation from circadian phase disturbance to mood variation is evident. (a–f) The fractions of causality between circadian
phase and mood symptoms among patients with MDD (a, d), BDI (b, e), and BDII (c, f), which were obtained by transfer entropy (TE). In
particular, the fraction of causality was calculated by changing the data inclusion threshold for data length (0, 100, 200, …, 600 days). As more
patients with low data size were excluded, and thus the causation detection with TE became more reliable, the causation from DLMO to Mood
became more evident in patients with major depressive disorder (MDD; (a)) and bipolar disorder I (BDI; (b)), but not BDII (c). (g–l) Unlike DLMO,
there is no apparent causation between Midsleep and Mood for all patients with mood disorders (i.e., MDD, BDI, and BDII).
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that, despite the existence of prediction errors, their
impact was sufficiently minimal to avoid distorting the
implication of the previous analysis.

The TE analysis in this study examined causality
from a source variable to a target variable by investi-
gating whether knowledge of the previous day’s source
variable can diminish the uncertainty of the present
day’s target variable. As depicted in the results (Fig. 3),
this analysis highlights evidence supporting the causal-
ity of the preceding day’s circadian phase change on
mood symptoms. This prompts the question of whether
the influence of the circadian phase on mood symptoms
extends beyond a single day. To explore this, we shifted
the source variable time series one day forward and
applied TE analysis. This approach allows us to evaluate
whether awareness of the source variable from two days
prior could reduce the uncertainty of the present day’s
target variable. Upon shifting the source time series by
one day, the overall % of causality decreased compared
to the case without a time series shift (Fig. S2). In
particular, the % of causality from DLMO to Mood of
patients with BDI decreased significantly, and that of
patients with MDD no longer shows a progressive in-
crease. This observation suggests that the influence of
the circadian phase disturbance from one day prior on
mood symptoms is most substantial and diminishes as
the delay increases.

Sleep phase disturbance induces circadian phase
disturbance, which potentially causes mood
episode relapse
Inter-daily circadian phase variations primarily hinge on
sleep-wake patterns, notably dictating the most pivotal
factor in the circadian rhythm—light exposure pattern.
This influence has become especially pronounced in
modern society due to the prevalence of artificial light.71

Nevertheless, our TE analysis suggests that the causal
link between circadian phase disruption and mood
symptoms is much stronger than that between sleep
phase disruption and mood symptoms in patients with
MDD and BDI. This raises the question of what specific
dynamical differences between circadian and sleep
phases contribute to this disparity in causality. To
explore this further, we examined the dynamics of
Midsleep and DLMO in two sample sleep-wake pattern
scenarios: (1) a sudden 4-h delay of sleep periods while
maintaining the overall sleep period (Fig. 4a) and (2) a
gradual variation in sleep durations while keeping the
midpoints of the sleep periods constant (Fig. 4b).

In both scenarios, changes in sleep patterns and the
following change in light exposure pattern resulted in
alterations in the circadian phase, but their change
tendencies differed. Specifically, when sleep periods
were suddenly delayed by 4 h, Midsleep also shifted by
4 h immediately, while DLMO exhibited a gradual delay,
taking more than six days to shift by 4 h (Fig. 4a). In
addition, when sleep durations varied while maintaining
a constant Midsleep, DLMO showed variation (Fig. 4b).
These distinctive dynamics between Midsleep and
DLMO may have contributed to the differential identi-
fication of causal relationships. For instance, a chronic
sleep phase disruption, which induces a large circadian
phase shift, might be more likely to cause mood
symptom variation than acute sleep phase disruptions.
Moreover, irregular sleep durations might induce sig-
nificant circadian shifts and contribute to mood symp-
toms even when the time of midsleep remains almost
the same.

Based on these observations, we can conclude the
following causal relationships between sleep patterns,
circadian phases, and mood disorder: disturbance in the
sleep pattern results in circadian phase disruption
whose dynamics differ from the sleep phase. This
distinct circadian phase disruption ultimately causes
mood symptom variation, which potentially results in
mood episode relapse in patients with mood disorders
(Fig. 4c).
Discussion
Accumulating evidence has shed light on the associa-
tions between sleep/circadian phase disturbance and
mood disorders,23,58,72–74 yet unravelling the direction of
causality remains challenging (Fig. 1).26 Our findings
based on the application of a mathematical model and
the TE analysis (Fig. 2) demonstrated strong evidence
supporting causality from circadian but not sleep phase
disturbance to mood symptoms for patients with MDD
and BDI, whereas no clear evidence supporting causality
was observed in patients with BDII (Fig. 3). These re-
sults suggest that disturbances in the circadian phase
preceding mood symptom variations may trigger re-
lapses of mood episodes in patients with MDD and BDI.
Furthermore, we explored the dynamics of the circadian
phase estimates, which, although linked to sleep pattern
disturbance, exhibited distinctive characteristics that
might contribute to the different causal relationships
with mood symptoms (Fig. 4a and b). Based on these
findings, we hypothesise that sleep phase disturbance
indirectly influences mood symptoms through circadian
phase disturbances (Fig. 4c).

The absence of evidence supporting causality in BDII
may be attributed to several factors. Until recently, it was
believed that BDI and BDII could be classified along a
spectrum based on the extent, duration, and severity of
manic symptoms. However, recent studies report more
prominent and longer depressions, more cyclothymic
temperament,75 greater likelihood of mixed features,76

and higher risk of mood recurrences77 in BDII than
BDI. These findings suggest that mood oscillations in
patients with BDII may be more chaotic than in patients
with BDI. Consequently, patients with BDII face diffi-
culties accurately assessing their daily mood, which can
result in inaccurate mood symptom recordings.
www.thelancet.com Vol 103 May, 2024
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Moreover, patients with BDII are more likely to have
comorbidity with borderline personality disorder (BPD)
than BDI.78 However, differentiating BPD from BDII is
a common diagnostic dilemma for clinicians.79 Whether
due to comorbidity or misdiagnosis of BPD, patients
with this disorder can complicate the establishment of a
causal relationship between the circadian phase and
mood symptoms due to their core features, such as af-
fective instability and emotional dysregulation. Inter-
estingly, a recent large study assessing polygenic risk
scores (PRS) for sleep traits in association with BD re-
ported that PRS for morningness was associated with a
reduced relative risk of BDI compared with the control
participants, while the results for BDII compared with
the control were not significant.80 This result aligns with
our results and may reflect the characteristics
mentioned above of patients with BDII.

The suggested causality from circadian phase to
subsequent mood symptoms indicates that disruptions
in circadian phase have the potential to lead to the
recurrence of mood symptoms in patients with mood
www.thelancet.com Vol 103 May, 2024
disorders. This finding aligns with previous research
that found that disturbances of circadian phase were
linked to the relapse of mood episodes. For instance, a
12-month prospective study found a significant associ-
ation between a later timing of baseline circadian ac-
tivity rhythm and an increased risk of depressive
episode relapses in patients with BD.81 A 48-week pro-
spective study revealed that comorbidity of circadian
rhythm sleep-wake disorders was significantly associ-
ated with the time to relapse of mood episodes.74 In
contrast, some longitudinal studies found that chro-
notype was not associated with mood disorders.82,83

However, a meta-analysis that included these longitu-
dinal studies reported a significant relationship between
evening chronotype and mood-related disturbances.84

The association of chronotype with mood disorders is
further supported by a recent large-sample genome-
wide association study, which revealed that earlier
diurnal preference is associated with a protective effect
on the risk of MDD.85 It is important to note, however,
that the previous studies primarily assessed the
11
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inter-individual level effects of circadian rhythm char-
acteristics. Our causality inference framework provides
insights into the within-individual-level impact of
circadian phase on mood symptoms through gathering
longitudinal data, revealing dynamic intra-individual
variability of estimated sleep/circadian rhythms and its
impact on mood symptoms. Therefore, our framework
addresses the limitations of previous research and
bridges the gap between circadian rhythm characteris-
tics and future mood episodes.

The suggested causality from circadian disruption to
mood symptoms also aligns with prior animal
studies.86,87 The studies involved mice carrying mutated
REV-ERB α gene, a circadian clock component, and
found that these mice exhibited behaviours akin to
elevated, similar to those in BD.86 In particular, the
studies proposed molecular links for this phenomenon
by demonstrating that REV-ERB α regulates dopamine
and serotonin levels in the midbrain and dorsal raphe,
respectively, neurotransmitters known to influence
mood.86,87 Our study significantly supports these prior
inquiries by employing a unique approach to establish
causality between time series data, distinct from previ-
ous animal studies. Taken together, these results
emphasise the importance of circadian rhythm in MDD
and BD, indicating its potential role in aetiology and
treatment.

This study utilised sleep onset and offset data
collected through the Fitbit Charge device to estimate
sleep and circadian phases. Previous research has indi-
cated that estimating gross sleep parameters such as
Total Sleep Time (TST) and Wakefulness After Sleep
Onset (WASO) using Fitbit devices can be inaccurate,
especially among individuals with psychiatric
conditions.88–90 However, it is worth noting that the
Fitbit device model employed in our study was a newer
model than the device used in prior research, and newer
generations have shown improved performance.91–93

Moreover, past studies have primarily noted inaccura-
cies in classifying WASO as sleep, while the estimation
of sleep onset and offsets remained reliable.88–90,94

Hence, the estimated sleep phase (i.e., Midsleep) in
our study can be deemed reliable. Additionally, WASO
typically occurs in low-light or dark conditions, making
it less likely to impact the accuracy of circadian phase
estimation using our methodology significantly. Never-
theless, further validation of the current Fitbit model’s
ability to estimate sleep onset and offset in the psychi-
atric population is imperative.

Previous studies have demonstrated the effectiveness
of mathematical models in simulating circadian rhythm
and estimating circadian phase, even in challenging
shift work scenarios where sleep patterns are highly
irregular. Specifically, while specific investigations have
reported reduced accuracy in predicting circadian
phases for shift workers compared to non-shift
workers,32,34,35 another study by Stone et al.33
demonstrated notably higher accuracy, even among
shift workers; they achieved circadian phase predictions
within ± 1 h for 80% and 68% of individuals on diurnal
and night schedules, respectively. This success was
attributed to their unique approach of setting initial
conditions based on individuals’ midsleep phase, devi-
ating from the uniform initial conditions used in pre-
vious studies. Inspired by this approach, we also
adopted individualised initial conditions recommended
by Stone et al. to enhance the accuracy of DLMO pre-
diction. Furthermore, acknowledging the lingering un-
certainty associated with initial conditions, we excluded
DLMO data from the first two weeks. Taken together,
our study’s circadian phase estimation is expected to be
robust and reliable, even when targeting individuals
with disrupted sleep patterns.

The circadian rhythms simulated with the mathe-
matical models have applications in various domains,
such as predicting appropriate sleep-wake patterns or
daily alertness level variation in shift workers.32,37,38 This
indicates the broad potential of utilising mathematical
model-predicted circadian rhythms to uncover the
intricate connections between circadian rhythm distur-
bances and the onset or progression of diverse health
conditions, such as neurodegenerative disease.95 This
approach might also be directly applied to data from
previous studies that have explored the temporal asso-
ciation between sleep and mood.41,42,96

Integration of wearable devices and mathematical
models can detect disruptions in circadian rhythms in
real time.35,97,98 This opens up the possibility of assessing
the risk of recurring mood episodes in the patient’s daily
life outside clinical settings. Additionally, it provides an
objective measure of the patient’s condition, which has
been lacking in traditional interview-based psychiatric
approaches to mood disorders. Based on these findings,
clinicians may be able to intervene early, before daily
mood swings develop into full-blown mood episodes.
This could include correcting the patient’s circadian
rhythm through lifestyle modification or administration
of light therapy or melatonin.99–101 In particular, the
timing of melatonin administration or light exposure
could be optimised based on the patient’s calculated
DLMO, considering the phase response curve.101,102

Other zeitgebers, such as mealtime and activity sched-
ules, also have potential as targets for intervention.

In order to make these interventions timely accord-
ing to patients’ dynamic conditions, digital therapeutics
(DTs) may be more appropriate than outpatient
clinics.97,100 DTs, a unique class of software applications
designed to deliver evidence-based treatments through
patients’ smartphones, tablets, or computers,64 are
emerging treatment options in mental health.103 Some
DTs, like reSET104 and Somryst,105 digitally provide
standardised versions of behavioural therapies already
employed in traditional clinician-based settings. On the
other hand, a DT focused on modulating circadian
www.thelancet.com Vol 103 May, 2024
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rhythms in accordance with their daily fluctuations
could offer a distinctive approach to treating mood dis-
orders. However, further clinical trials are imperative to
establish robust evidence concerning therapeutic
efficacy.

While the current study found evidence supporting a
causal link between circadian phase disturbance and
mood symptoms, further investigation is needed to
determine the exact nature of this relationship. Specif-
ically, it is crucial to explore whether circadian rhythm
delay or advance actively contributes to the development
of depression or (hypo)mania. Moreover, this study
focused only on phase disturbance, while various types
of circadian disturbances are known to be associated
with mood disorders, such as chronotype, amplitude,
and irregularity of sleep/circadian rhythms.106,107 It
would be interesting to apply the same approach as in
this study to circadian amplitude and mood symptom
variation data. Furthermore, it is essential to acknowl-
edge that other sleep-related factors, like sleep loss,
which were not considered in this study, could poten-
tially influence mood symptoms in individuals through
non-circadian mechanisms. These unexplored factors
might actively contribute to mood symptoms in cases
where a causal link between DLMO and mood was not
identified in this study. It would be intriguing to
conduct further investigations into the causality between
various sleep parameters like sleep duration and mood
symptoms.

Several limitations in our study methodologies war-
rant acknowledgement. Firstly, subjective (self-reported)
mood symptoms may be susceptible to biases. It is
essential to approach the interpretation of subjective
mood symptoms with caution, considering the potential
for miscommunication or misunderstanding, and
maintain a nuanced understanding when assessing
their implications in mood disorders. Secondly, our
study did not account for the potential effects of medi-
cations and comorbidities. Previous research has indi-
cated that lithium treatment in BD was associated with
shifts towards morningness and a larger circadian
amplitude.108 Other mood stabilisers, such as valproic
acid and even serotonergic antidepressants, are also
known to influence circadian rhythms.109,110 Further-
more, comorbid psychiatric conditions, such as sub-
stance use disorder with mood disorders, are recognised
for their impact on circadian rhythms.111,112 The rate of
comorbidities in the patient population, except for anx-
iety disorder, mainly was below 10% (Table 1). Thus, the
impact of psychiatric comorbidities on our results is
presumed to be negligible. However, a majority of pa-
tients in this study were using medications, including
lithium, mood-stabilising anticonvulsants, and antide-
pressants (Table 1). This could potentially influence the
study results. Thirdly, depending on sleep onset and
offset data collected from Fitbit, which may necessitate
further validation in the psychiatric population, poses a
www.thelancet.com Vol 103 May, 2024
potential limitation to the current study. Strengthening
the findings may require further validation of our
approach by utilising more reliable sleep data. Finally,
while the Forger model has been successfully validated
in diverse populations, including shift workers, its vali-
dation for patients with mood disorders is lacking. Pa-
tients with depression have shown hyposensitivity of the
circadian system to light,113 and supersensitivity to light
has been proposed as a biomarker of BD.106 Given po-
tential variations in physiological properties related to
circadian rhythms in this patient group compared to
non-patients, additional calibration of model parameters
may be necessary to enhance the accuracy of circadian
phase predictions for individuals with mood disorders.
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