
Original Investigation | Psychiatry

In Vivo Reactive Astrocyte Imaging in Patients With Schizophrenia Using Fluorine
18–Labeled THK5351
Minah Kim, MD, PhD; Woori Choi, MS; Sunah Choi, BS; Harin Oh, BS; Jongrak Kim, BS; Jungha Lee, BS; Su-Jin An, MS; Jun Seo Hwang, BS; Yun-Sang Lee, PhD;
In Chan Song, PhD; Sun-Young Moon, MD, PhD; Silvia Kyungjin Lho, MD, PhD; Sang Soo Cho, PhD; Jun Soo Kwon, MD, PhD

Abstract

IMPORTANCE In vivo imaging studies of reactive astrocytes are crucial for understanding the
pathophysiology of schizophrenia because astrocytes play a critical role in glutamate imbalance and
neuroinflammation.

OBJECTIVE To investigate in vivo reactive astrocytes in patients with schizophrenia associated with
positive symptoms using monoamine oxidase B (MAO-B)–binding fluorine 18 ([18F])–labeled
THK5351 positron emission tomography (PET).

DESIGN, SETTING, AND PARTICIPANTS In this case-control study, data were collected from
October 1, 2021, to January 31, 2023, from the internet advertisement for the healthy control group
and from the outpatient clinics of Seoul National University Hospital in Seoul, South Korea, for the
schizophrenia group. Participants included patients with schizophrenia and age- and sex-matched
healthy control individuals.

MAIN OUTCOMES AND MEASURES Standardized uptake value ratios (SUVrs) of [18F]THK5351 in
the anterior cingulate cortex (ACC) and hippocampus as primary regions of interest (ROIs), with
other limbic regions as secondary ROIs, and the correlation between altered SUVrs and Positive and
Negative Syndrome Scale (PANSS) positive symptom scores.

RESULTS A total of 68 participants (mean [SD] age, 32.0 [7.0] years; 41 men [60.3%]) included 33
patients with schizophrenia (mean [SD] age, 32.3 [6.3] years; 22 men [66.7%]) and 35 healthy
controls (mean [SD] age, 31.8 [7.6] years; 19 men [54.3%]) who underwent [18F]THK5351 PET
scanning. Patients with schizophrenia showed significantly higher SUVrs in the bilateral ACC (left, F =
5.767 [false discovery rate (FDR)–corrected P = .04]; right, F = 5.977 [FDR-corrected P = .04]) and
left hippocampus (F = 4.834 [FDR-corrected P = .04]) than healthy controls. Trend-level group
differences between the groups in the SUVrs were found in the secondary ROIs (eg, right
parahippocampal gyrus, F = 3.387 [P = .07]). There were positive correlations between the SUVrs in
the bilateral ACC and the PANSS positive symptom scores (left, r = 0.423 [FDR-corrected P = .03];
right, r = 0.406 [FDR-corrected P = .03]) in patients with schizophrenia.

CONCLUSIONS AND RELEVANCE This case-control study provides novel in vivo imaging evidence
of reactive astrocyte involvement in the pathophysiology of schizophrenia. Reactive astrocytes in the
ACC may be a future target for the treatment of symptoms of schizophrenia, especially positive
symptoms.
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Findings In this case-control study of

68 participants, standardized uptake
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Introduction

Glutamatergic imbalance and neuroinflammation are believed to be important in schizophrenia
pathophysiology. The glutamate hypothesis suggests that psychotic symptoms are caused by
N-methyl-D-aspartate receptor hypofunction-mediated abnormal glutamatergic neurotransmission
with a dysfunctional thalamic filter system.1-3 Furthermore, excessive glutamate activity might lead
to excitotoxic damage and oxidative stress–related neuroinflammation, which further explains the
pathophysiology.4,5 This finding is consistent with the immune hypothesis suggesting the
involvement of neuroinflammation caused by microglial overactivation in the development and
progression of schizophrenia.6-9

Previous magnetic resonance (MR) spectroscopy studies have revealed that patients with
schizophrenia exhibit altered glutamate and/or glutamine levels in several brain regions, including
the anterior cingulate cortex (ACC) and hippocampus, although the direction and degree of
alterations have been inconsistent.10-13 Among individuals at clinically high risk for psychosis, the
baseline hippocampal glutamate level was suggested to be associated with the transition to
psychotic disorder.14 In vivo microglial imaging studies using 18-kDa translocator protein positron
emission tomography (PET) to detect neuroinflammation in the frontal cortex, ACC, temporal cortex,
and hippocampus of patients with schizophrenia have also provided inconsistent results.15-18 These
inconsistencies may be due to the simple approach of using individual glutamate or
neuroinflammation markers in a rather complex, mutually influencing system. However,
investigations aimed at integrating glutamate imbalance and neuroinflammation in the
pathophysiology of schizophrenia are limited, and only 1 study5 has attempted to bridge the gap
between the 2 hypotheses by showing that the levels of the antioxidant glutathione and excitotoxic
glutamate and/or glutamine are lower in patients with schizophrenia who are in stable clinical
condition.

Reactive astrocytes are promising candidates for achieving a comprehensive understanding of
glutamate imbalance and neuroinflammation in the pathophysiology of schizophrenia because
astrocytes play an important role in glutamate recycling, neurotransmission (including dopamine),
and the neuroimmune system, in addition to their basic role in supporting neurons.19-21 Reactive
astrocytes are remodeled in response to injury, disease, or infection of the brain and can be measured
in vivo by detecting overexpressed monoamine oxidase B (MAO-B) on the outer mitochondrial
membrane.22 In patients with schizophrenia, abnormal astrocyte-neuronal interactions have been
suggested to be the mechanism of psychotic symptom development,2 and alterations in the
expression of astrocyte-related genes and their products in patients’ postmortem brains have been
reported.23 However, in vivo reactive astrocyte imaging has not yet been reported in patients with
schizophrenia.

In this study, we investigated the in vivo imaging of reactive astrocytes and their association
with positive symptoms in patients with schizophrenia using validated MAO-B–binding fluorine 18
([18F])–labeled THK5351 PET24-26 to obtain a more comprehensive understanding of the role of
reactive astrocytes in schizophrenia pathophysiology. The primary regions of interest (ROIs) were
the ACC and hippocampus based on previous studies of glutamate imbalance, neuroinflammation,
and positive symptom development in patients with schizophrenia.10,13,16,27 The secondary ROIs
included other limbic regions, such as the posterior cingulate cortex (PCC), parahippocampal gyrus,
amygdala, insula, and nucleus accumbens, based on previous studies28,29 that reported the
association between glutamate alterations and positive symptoms in these regions in patients with
schizophrenia.

Methods

This case-control study followed the Strengthening the Reporting of Observational Studies in
Epidemiology (STROBE) reporting guideline. All participants provided written informed consent
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after receiving a thorough explanation of the study procedure. The study was conducted in
accordance with the Declaration of Helsinki30 and was approved by the Institutional Review Board
of Seoul National University Hospital.

Participants
A total of 33 patients with schizophrenia and 35 age- and sex-matched healthy controls participated
in this study. All study participants were of East Asian descent. Information regarding the sample
size calculation is provided in the eMethods in Supplement 1. Patients with schizophrenia were
recruited from the outpatient office of the Department of Neuropsychiatry at Seoul National
University Hospital. The diagnosis of schizophrenia was confirmed using the Structured Clinical
Interview for the Diagnostic and Statistical Manual of Mental Disorders (Fourth Edition) Axis I
Disorders (SCID-I) by board-certified psychiatrists (M.K., S.-Y.M., and S.K.L.). Psychotic symptoms
were assessed using the Positive and Negative Syndrome Scale (PANSS).31 The Hamilton Rating Scale
for Depression32 and the Hamilton Rating Scale for Anxiety33 were used to measure the severity of
depression and anxiety, respectively. The healthy controls were recruited via internet advertisement
and were screened using the SCID-I Nonpatient Edition. Healthy controls were excluded if they had
any past or current diagnosis of a psychiatric disorder and any first- to third-degree biological
relatives with a psychotic disorder. In all participants, general functional status was evaluated using
the modified Global Assessment of Functioning, and intelligent quotient (IQ) was measured with the
Korean version of the Wechsler Adult Intelligence Scale.34 The exclusion criteria included substance
abuse or dependence (except nicotine), neurological disease or significant head trauma, medical
illness that could accompany psychiatric symptoms, and intellectual disability (IQ < 70).

PET-MR Image Acquisition
A PET-MR machine (Biograph mMR; Siemens Healthcare) was used to obtain dynamic 3-dimensional
PET images. Immediately after an intravenous bolus injection of 185 MBq (5 mCi) of [18F]THK5351,
27 frames of emission scans (8 × 15 seconds, 3 × 60 seconds, 5 × 120 seconds, and 11 × 300
seconds) and a total 70-minute PET scan were acquired while the participant was at rest. Fluorine
18–labeled THK5351 was synthesized and radiolabeled at Seoul National University Hospital, and
details are provided in the eMethods in Supplement 1. Each participant was fitted with an MR imaging
coil and supporting cushion to reduce head motion during the PET scan, and the participants were
asked to remain as still as possible during the scan.

Manufacturer’s software from the PET-MR device (e7tool; Siemens Healthcare) was used for the
reconstruction of the PET data. The PET images were reconstructed using the ordered-subset
expectation maximization algorithm with 24 subsets and 5 iterations. Images were filtered with a
4-mm full-width at half-maximum Gaussian filter at the center of the field of view (image
matrix, 256 × 256; 127 sections; voxel size, 1.4 × 1.4 × 2.0 mm). Segmentation-based attenuation
correction was conducted with a 3-tissue segmentation map acquired by an ultrashort echo time (TE)
sequence (repetition time [TR], 11.9 milliseconds; TE 1, 0.07 milliseconds; TE 2, 2.46 milliseconds; flip
angle, 10°; 192 × 192 matrix). A high-resolution structural T1 image (TE, 2.2 milliseconds; TR, 2400
milliseconds; flip angle, 8°; 0.85-mm section thickness) was also collected for each participant at the
same time to rule out structural lesions in the brain and to provide an anatomical reference for the
[18F]THK5351 analysis.

PET Image Analysis
All preprocessing was conducted using Statistical Parametric Mapping (SPM 12; Welcome
Department of Imaging Neuroscience). The analysis flowchart and selected cerebellar lobules are
presented in eFigure 1 in Supplement 1.

For semiquantitative PET analysis, standardized uptake value ratios (SUVrs) were calculated in
reference to the inferior cerebellar parcels of the cerebellar cortex. To delineate the inferior cerebellar

JAMA Network Open | Psychiatry In Vivo Reactive Astrocyte Imaging in Patients With Schizophrenia Using [18F]THK5351

JAMA Network Open. 2024;7(5):e2410684. doi:10.1001/jamanetworkopen.2024.10684 (Reprinted) May 9, 2024 3/11

jamanetwork/2024/jno/05_09_2024/zoi240383 PAGE: 3 SESS: 56 OUTPUT: Apr 17 4:50 2024



ROI, the SUIT (spatially unbiased infratentorial template) toolbox,35 which contains a high-resolution
atlas template of the cerebellum and brainstem and individual T1 images, was used. The cerebellar
structure was isolated from the cerebral structure and segmented into tissue types using the Dartel
algorithm. Using the deformation field obtained during the Dartel procedure, the SUIT template was
transferred to an individual PET space. The lobular ROIs that corresponded to the inferior cerebellar
gray matter (bilateral Crus II, VIIb, VIIIa, VIIIb, and IX) were used to extract radioactivity from the PET
image. After frame-by-frame motion correction of the PET image, the T1 images were coregistered
to the mean images of 27 realigned PET frames.

The bilateral ACC and hippocampus, as primary ROIs, and other limbic regions (bilateral PCC,
parahippocampal gyri, amygdala, insula, and nucleus accumbens), as secondary ROIs, were
predefined using the Wake Forest University PickAtlas toolbox in SPM 12.36 The predefined ROIs
were transformed into PET standard space using the deformation matrix calculated from
PET-coregistered T1 images, and SUVs were extracted for all PET frames to assess the time activity
curve in each ROI. Finally, based on previous studies that tested the optimal time windows to
estimate [18F]THK5351 quantification,37 the SUVr was calculated as the sum of 45- to 65-minute
postinjection frames using the mean radioactivity of the inferior cerebellar ROI obtained by the SUIT
procedure as a reference.

Statistical Analysis
Data were collected from October 1, 2021, to January 31, 2023. Demographic and clinical
characteristics were compared between patients with schizophrenia and healthy controls using an
independent t test or a Welch t test if the variance was not equal and a χ2 test or a Fisher exact test for
categorical data. Group differences in the SUVr in the bilateral ACC and hippocampus (ie, primary
ROIs) were tested using analysis of covariance, with age and sex as covariates. Pearson correlation
analysis was performed to investigate the association between altered SUVrs in primary ROIs and
PANSS positive symptom scores in patients with schizophrenia. To rule out the possible effect of the
duration of illness or olanzapine-equivalent dose of antipsychotics prescribed at the time of study
participation on the SUVrs of the primary ROIs, Pearson correlation analysis was performed. To
account for multiple comparisons, a false discovery rate (FDR) correction was performed. Group
differences in SUVrs in other limbic ROIs were assessed using repeated-measures analysis of variance
(ANOVA), with brain regions (ie, bilateral PCC, parahippocampal gyri, amygdala, insula, and nucleus
accumbens) as the within-participants factor and age and sex as covariates. All statistical analyses
were performed in SPSS, version 25.0 for Windows (IBM Corporation), and the level of statistical
significance was set at 2-sided P < .05.

Results

A total of 68 participants (mean [SD] age, 32.0 [7.0] years; 41 men [60.3%] and 27 women 39.7%])
included 33 patients with schizophrenia (mean [SD] age, 32.3 [6.3] years; 22 men [66.7%] and 11
women [33.3%]) and 35 healthy controls (mean [SD] age, 31.8 [7.6] years; 19 men [54.3%] and 16
women [45.7%]). Table 1 summarizes the demographic and clinical characteristics of the
participants. There were no significant group differences in age or sex, while mean (SD) IQ (107.2
[12.5] vs 116.7 [11.0]; P = .001) and modified Global Assessment of Functioning scores (54.1 [11.9] vs
87.3 [4.8]; P < .001) were lower in patients with schizophrenia than in healthy controls. There were
no significant group differences in the amount of [18F]THK5351 injected.

According to the group comparison of primary ROIs, patients with schizophrenia had
significantly greater SUVrs in the bilateral ACC (left, F = 5.767 [FDR-corrected P = .04]; right, F = 5.977
[FDR-corrected P = .04]) and left hippocampus (F = 4.834 [FDR-corrected P = .04]) than healthy
controls (Table 2 and Figure 1). There were positive correlations between the SUVrs in the bilateral
ACC and the PANSS positive symptom scores (left, r = 0.423 [FDR-corrected P = .03]; right,
r = 0.406 [FDR-corrected P = .03]) in patients with schizophrenia (Figure 2 and eTable 1 in
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Supplement 1). Repeated-measures ANOVA revealed trend-level group differences in the SUVrs in
the secondary ROIs (eg, right parahippocampal gyrus, F = 3.387 [P = .07]) (eFigure 2 and eTable 2 in
Supplement 1). There was no correlation between the duration of illness or olanzapine-equivalent
dose of antipsychotics prescribed at the time of study participation and the SUVrs of the primary
ROIs (eTable 3 in Supplement 1).

Discussion

In this study, we investigated in vivo reactive astrocyte imaging using MAO-B–binding [18F]THK5351
PET to reveal the role of reactive astrocytes, which are involved in both glutamate imbalance and
neuroinflammation, in schizophrenia pathophysiology. Patients with schizophrenia had elevated
SUVrs in the bilateral ACC and left hippocampus compared with healthy controls. In addition, positive
correlations between the SUVrs in the bilateral ACC and the PANSS-positive symptom scores were
found in patients with schizophrenia. There were trend-level group differences in the SUVrs in other
limbic regions investigated as secondary ROIs. The results of this study not only provide in vivo
neuroimaging evidence of the role of reactive astrocytes in schizophrenia pathophysiology but also
highlight the region-specific association between reactive astrocytes in the ACC and positive
symptoms in patients with schizophrenia.

Our findings of elevated MAO-B–binding [18F]THK5351 uptake in patients with schizophrenia
suggest a role for reactive astrocytes in the neurodevelopmental abnormalities of these patients.
Astrocytes are known to be important in neurodevelopment and to play a critical role in synapse

Table 1. Demographic and Clinical Characteristics of the Participants

Characteristic

Participant groupa Statistical analysis
Patients with
schizophrenia
(n = 33)

Healthy controls
(n = 35) χ2 or t testb P value

Sex, No. men/women 22/11 19/16 1.088 .30

Handedness, No. right/left 29/4 35/0 2.584 .11

Age, y 32.3 (6.3) 31.8 (7.6) 0.296 .77

Intelligence quotient 107.2 (12.5) 116.7 (11.0) −3.362 .001c

Duration of illness, mo 160.3 (74.0) NA NA NA

PANSS scoresd

Total 49.2 (12.0) NA NA NA

Positive symptoms 12.7 (5.3) NA NA NA

Negative symptoms 11.5 (4.3) NA NA NA

General symptoms 25.0 (5.7) NA NA NA

HAM-A scoree 3.6 (2.7) NA NA NA

HAM-D scoref 5.2 (3.4) NA NA NA

mGAF scoreg 54.1 (11.9) 87.3 (4.8) −15.204 <.001c

Antipsychoticsh 21.5 (14.1) NA NA NA

Injected dose of [18F]THK5351, mCi 5.8 (0.6) 5.7 (0.4) 0.656 .51

Abbreviations: HAM-A, Hamilton Rating Scale for
Anxiety; HAM-D, Hamilton Rating Scale for
Depression; mGAF, modified Global Assessment of
Functioning; NA, not applicable; PANSS, Positive and
Negative Syndrome Scale.
a Unless otherwise indicated, data are expressed as

mean (SD).
b Calculated using an independent t test or a Welch t

test if the variances were not equal, and a χ2 test or a
Fisher exact test for categorical data.

c Statistically significant at P < .005.
d Scores range from 30 to 210, with higher scores

indicating greater severity of psychotic symptoms.
e Scores range from 0 to 56, with higher scores

indicating greater severity of anxiety.
f Scores range from 0 to 52, with higher scores

indicating greater severity of depression.
g Scores range from 1 to 100, with higher scores

indicating higher functioning.
h Mean olanzapine equivalent dose of antipsychotics

prescribed at the time of study participation.

Table 2. Group Comparison Results of Fluorine 18–Labeled THK5351 Uptake in Primary ROIs

Primary ROI

SUV ratio, mean (SD)a Statistical analysisb

Schizophrenia
(n = 33)

Healthy controls
(n = 35) F statistic P value

FDR-corrected
P value

Left anterior cingulate
cortex

176.3 (232.9) 164.8 (181.1) 5.767 .02c .04c

Right anterior cingulate
cortex

177.8 (233.3) 166.1 (182.7) 5.977 .02c .04c

Left hippocampus 213.6 (289.8) 200.3 (265.6) 4.834 .03c .04c

Right hippocampus 206.8 (355.4) 196.4 (286.9) 2.311 .13 .13

Abbreviations: FDR, false discovery rate; ROI, region of
interest; SUV, standardized uptake value.
a Data are multiplied by 10−3.
b Analysis of covariance with age and sex as covariates.
c Statistically significant at P < .05.

JAMA Network Open | Psychiatry In Vivo Reactive Astrocyte Imaging in Patients With Schizophrenia Using [18F]THK5351

JAMA Network Open. 2024;7(5):e2410684. doi:10.1001/jamanetworkopen.2024.10684 (Reprinted) May 9, 2024 5/11

jamanetwork/2024/jno/05_09_2024/zoi240383 PAGE: 5 SESS: 56 OUTPUT: Apr 17 4:50 2024



formation and function as well as neuronal survival and migration; thus, abnormal astrocytes can
increase the vulnerability of the brain to neurodevelopmental disorders such as schizophrenia.38,39

Windrem et al40 showed that mice chimerized with induced pluripotent stem cells derived from
patients with childhood-onset schizophrenia exhibited problems with glial cells, including astrocytes,
suggesting that genetic abnormalities in schizophrenia produce abnormalities in astrocytes, which
are critical for brain development and schizophrenia pathophysiology. Thus, the results of the
present study support the vulnerability and neurodevelopmental model of schizophrenia and
suggest the role of reactive astrocytes in schizophrenia pathophysiology by providing in vivo
neuroimaging evidence of reactive astrocytes in patients with schizophrenia.

Furthermore, the results of this study provide integrative supporting evidence for the glutamate
and immune hypotheses in schizophrenia pathophysiology. Previous studies aimed at measuring
glutamate and/or glutamine levels in patients with schizophrenia11,13 have produced inconsistent
results, which may be due to the lack of consideration of interacting systems other than glutamate.
Microglial imaging studies using translocator protein PET to show neuroinflammation in patients with
schizophrenia16,18 have also provided insufficient evidence that may be caused by subtle changes in
microglial activity. Astrocytes not only play important roles in glutamate cycling and synaptic
transmission but also undergo astrogliosis in reaction to neuroinflammation, as shown in
neuroinflammatory diseases such as Wilson disease and multiple sclerosis.2,6,25,41 Therefore, the
results of the present study support that both the glutamate and immune hypotheses can provide a
more comprehensive understanding of the interaction between glutamate and the immune system

Figure 1. Group Comparison of Fluorine 18–Labeled THK5351 Retention in Bilateral Anterior Cingulate Cortex (ACC) and Hippocampus
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determined as a false discovery rate (FDR)–corrected P < .05. The center horizontal bars indicate means; the outer horizontal bars indicate 95% CIs.
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in the pathophysiology of schizophrenia by revealing reactive astrocytes in vivo in patients with
schizophrenia.

In the present study, elevated [18F]THK5351 uptake was detected in the bilateral ACC and left
hippocampus of patients with schizophrenia compared with healthy controls. These findings are
consistent with previous studies23,42 reporting that elevated astrocyte-, glutamate-, and immune-
related genes and gene products were found in the postmortem brains of patients with
schizophrenia. Previous neuroimaging studies targeting the glutamate system or
neuroinflammation13,14,16,28,43 have also reported alterations in the ACC and hippocampus, which are
known to be important brain regions involved in schizophrenia. In addition, an elevated SUVr of
MAO-B–binding [18F]THK5351 in the bilateral ACC was positively correlated with positive symptom
severity, as measured by the PANSS, in patients with schizophrenia. The ACC is one of the limbic
cortices, and its role in fundamental cognitive processes, such as motivation, decision-making, and
social cognition, which are impaired in patients with schizophrenia in relation to psychotic
symptoms, has been highlighted.44,45 A previous study from Kim et al,46 which revealed that
thalamocortical dysrhythmia represented by elevated resting-state theta phase–gamma amplitude
coupling in the ACC of patients with schizophrenia spectrum disorder was positively correlated with
symptom severity, also supported the association of reactive astrocytes in the ACC with positive
symptoms.2

Limitations
This study has several limitations. First, the current study participants were patients with
schizophrenia who had more than 5 years of antipsychotic treatment, although there have been
suggestions of an association between prolonged exposure to antipsychotics and increased MAO-B
expression in animal studies.47,48 However, there have been no reports regarding the association
between chronic antipsychotic exposure and MAO-B elevation in patients with schizophrenia, and a
recent study49 suggested that MAO-B detected by PET imaging is a target for novel drug
development in patients with schizophrenia.23,50 In addition, we did not find any correlation
between the duration of illness or olanzapine-equivalent dose of antipsychotics prescribed at the
time of study participation and the SUVrs of the primary ROIs. The current study results should be
interpreted with caution because we did not perform this study in patients who were drug naive or
with first-episode psychosis who may experience a minimal effect of antipsychotics on MAO-B

Figure 2. Correlation Between Fluorine 18–Labeled THK5351 Retention and Positive Symptom Severity in Patients With Schizophrenia
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as a false discovery rate (FDR)–corrected P < .05.

The orange lines indicate regression lines.
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expression. Second, because of the limitations of the MAO-B–detecting PET method, this study could
only provide indirect evidence of reactive astrocytes in schizophrenia pathophysiology, as in previous
animal, postmortem brain, and neuroimaging studies.13,21,23,40 Further studies with direct methods
to investigate astrocytes in patients with schizophrenia are warranted to confirm the role of reactive
astrocytes in the pathophysiology of schizophrenia. Third, the results of the present study are
exploratory findings that need further validation in other studies due to the small effect size
associated with the small sample size and other limitations mentioned above.

Conclusions

This case-control study provides novel in vivo imaging evidence of reactive astrocyte involvement in
the pathophysiology of schizophrenia. Considering the role of astrocytes in brain development,
neurotransmission, and immune reactions, reactive astrocytes can be a strong biomarker for
schizophrenia treatment. In particular, reactive astrocytes in the ACC may be a future target of
neuromodulation therapeutics for the positive symptoms of schizophrenia. To support the findings
of the present study, a more direct investigation of astrocytes generated by the reverse
differentiation of induced pluripotent stem cells derived from patients with schizophrenia is needed.
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