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A B S T R A C T   

There has been growing interest in brain aging and rejuvenation. It is well known that brain aging is one of the 
leading causes of neurodegenerative diseases, such as Alzheimer’s disease, but brain aging alone can cause 
cognitive decline. Microglia are thought to act as ‘conductors’ of white matter aging by modulating diverse glial 
cells and phagocytosing white matter-derived myelin debris. A recent study identified a specific subpopulation of 
microglia in the white matter of aged mice, termed white matter-associated microglia (WAM). Additionally, 
senescent microglia show impaired phagocytic function and altered lipid metabolism, which cause accumulation 
of lipid metabolites and eventually lead to myelin sheath degeneration. These results suggest that senescent 
WAM could be pivotal players in axonal loss during brain aging. The aim of this review is to assess the current 
state of knowledge on brain aging, with an emphasis on the roles of the white matter and microglia, and suggest 
potential approaches for rejuvenating the aged brain.   

1. Introduction 

Life expectancy has steadily increased over time and may reach over 
90 years from birth by 2030 in several countries (Kontis et al., 2017). 
Taken together with a decrease in birth rate, this has resulted in a 
marked augmentation of elderly in the population age distribution. 

There is a term called ‘normal brain aging’ that implies that brain 
aging without neurodegenerative disease is not a pathological state, but 
rather is simply part of a natural process. However, recent research 
suggesting that the aged brain is a pathological state has challenged this 
concept. Age is the greatest risk factor for some major neurodegenera-
tive diseases, such as Alzheimer’s disease (AD) (Association, 2016). 
Additionally, age-related changes in the brain negatively affect cogni-
tive reserve and prognosis in stroke (Umarova, 2017). Moreover, brain 
aging alone can cause significant impairment in various domains of 
cognition, including inductive reasoning, spatial orientation, and verbal 
memory (Hedden and Gabrieli, 2004). In this context, median scores of 
Mini-Mental State Examinations (MMSE) start to decline from middle 
age, reaching 25 by 80 years of age (Crum et al., 1993) (Fig. 1). 

Numerous studies have focused on rejuvenation of the aging brain 
(Wyss-Coray, 2016). Injecting circulatory factors from young mice into 

old mice has been shown to enhance synaptic plasticity, neurogenesis, 
and cognitive function in old mice (Katsimpardi et al., 2014; Villeda 
et al., 2014). Conversely, injecting aged blood plasma into young mice 
negatively affects neurogenesis and cognitive function (Villeda et al., 
2011). Soluble factors, such as insulin-like growth factor, 
gonadotropin-releasing hormone, and growth hormone-releasing hor-
mone intensify hippocampal neurogenesis in the aged brain (Baker 
et al., 2012; Stern et al., 2014; Trejo et al., 2001; Zhang et al., 2013). 
Caloric restriction and exercise are also well-known strategies for 
reducing age-related brain changes (Colcombe et al., 2006; Erickson 
et al., 2011; Ingram et al., 1987; Wahl et al., 2016, 2017, 2018). Most of 
these previous efforts have focused on neurogenesis in the gray matter. 
Only a few studies have been conducted on brain rejuvenation in rela-
tion to white matter. 

The aim of this review is to provide an assessment of the current state 
of knowledge on brain aging, with an emphasis on the roles of white 
matter and microglia, with the ultimate goal of identifying potential 
strategies for rejuvenating the aged brain. 
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2. Brain aging and white matter loss 

2.1. Age-related white matter loss: a macroscopic view 

It is well known that aged individuals exhibit diffuse atrophy of the 
brain (Drayer, 1988). One could suppose that neurodegenerative dis-
eases are accelerated forms of brain aging. However, the significant 
differences between brain aging and neurodegenerative diseases chal-
lenge this concept. For example, neuronal loss is not a principal hall-
mark of brain aging. 

In AD, there are significant reduction in cortical thickness and the 
number of cortical neurons that are associated with a corresponding 
decline in cognitive function (Ossenkoppele et al., 2019). Decrements of 
the cortical thickness and the volume of gray matter were also found 
among general aging process (Irimia, 2021; Lee et al., 2016; Terry et al., 
1987). However, AD and general aging show distinct pattern of atrophy. 
AD-related atrophy is known to be prominent in specific region, espe-
cially in hippocampus, amygdala, entorhinal cortex and inferior tem-
poral cortex (Habes et al., 2021; Ossenkoppele et al., 2019). In contrast, 
aging-related atrophy shows widespread modest decrements of cortical 
thickness, and pronounced in the frontal operculum, superior temporal, 
insular, and frontal and inferior parietal cortex (Habes et al., 2021). 

Also, studies which counted cortical neuronal numbers demon-
strated that cortical neuronal loss was less significant than the volume 
loss of gray matter in aged brain (Pakkenberg and Gundersen, 1997; 
Peters and Kemper, 2012; Terry et al., 1987). Only 10% loss in the total 
number of neurons in the cortex was observed between 20 and 90 years 
of age (Pakkenberg and Gundersen, 1997). Autopsy studies identified 
the age-dependent shrinkage of cortical neurons, which might explain 
the discrepancy between cortical thickness and cortical neuronal loss 
(Terry et al., 1987). Several monkey studies support these human data, 
supporting that rather than cortical neuronal loss, shrinkage of neuronal 
body and morphological dystrophy are the main features of cortical 
aging process (Peters and Kemper, 2012; Peters et al., 1994, 1996, 1998; 
Smith et al., 2004). 

Throughout adulthood, the pattern of white matter volume changes 
shows a u-shaped curve with decreases appearing in middle age (Fote-
nos et al., 2005; Giorgio et al., 2010; Habes et al., 2021; Liu et al., 2016) 
(Fig. 1). White matter volume loss is also observed in AD (Habes et al., 
2021; Pini et al., 2016; Salat et al., 2009). But volumetric analysis had 
revealed out that white matter volume reduction of AD was only 
restricted in several regions compared with general aging process (Salat 
et al., 2009, 1999). Also, gray-white matter volume ratio at prefrontal 
cortex in young healthy human was 1.7, that in elderly with normal 
cognitive function was 2.3, but that in AD patients was 1.9, indicating 
that white matter loss is more predominant than gray matter loss in 
general aging process, compared with AD (Salat et al., 1999). 

In addition to the volumetric analysis, white matter lesions (WML) 
and cerebral microbleeds (CMBs) could also represent white matter 
aging. WML and CMBs, which are the indicators of small vessel disease 
burden in the brain, are known to be increased during aging process 
(Graff-Radford et al., 2020; Habes et al., 2021; Vinke et al., 2018). 

2.2. Age-related white matter loss: a microscopic view 

Most axons residing in cerebral white matter are myelinated. During 
the aging process, several age-related defects appear in the myelin 
sheath, the most common of which is a split in myelin lamellae (Peters, 
2002). In this setting, the sheath fills with fluid and balloons and myelin 
debris accumulates (Feldman and Peters, 1998). These degenerative 
changes cause delayed conduction velocity of axonal fibers, affecting 
cognitive functions (Felts et al., 1997). 

Age-related changes also appear in oligodendrocytes. Oligodendro-
cytes remodel the myelin sheath in axon fibers throughout life, a process 
called myelin plasticity (Hill et al., 2018). Oligodendrocytes in the ce-
rebrum of aged primates are swollen and contain dense intracellular 
inclusions (Peters, 1996). A recent study reported that the enzyme TET1 
(ten-eleven-translocation 1) could be the key to explaining the decrease 
in the myelin-repair function of oligodendrocytes (Moyon et al., 2021). 
Researchers found that TET1 is essential for myelin repair in 

Fig. 1. Hypothesis of white matter aging in the brain. Numbers on the age arrow indicate years. Mini Mental Status Examination (MMSE) scores were used to 
represent cognitive function. Decreases in mean MMSE scores begin in the 40 s and eventually reach 24 by the late 80 s. White matter volume shows a u-shaped 
pattern, with decreases appearing after middle-age, as is also the case for cognitive function. Ramified microglia are converted to white matter associated microglia 
(WAM), which phagocytose myelin debris. As individuals age, senescent WAM are unable to efficiently clear myelin debris, resulting in accumulation of damaged 
myelin and leading to cognitive dysfunction. However, microglial replacement could reverse this damage. 
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oligodendrocytes, and showed that its function is decreased in aged 
mice. The number of oligodendrocytes also decreases after 13 months of 
age in mice (Hill et al., 2018; Wang et al., 2020). This decrease in 
oligodendrocyte number combined with loss of function contribute to 
age-related myelin degeneration and diminished renewal. Conversely, 
acceleration of oligodendrocyte differentiation promotes re-myelination 
of axons in white matter, leading to recovery from the cognitive decline 
associated with aging. The fact that the number of oligodendrocyte 
precursor cells (OPCs) is unchanged during aging has spurred efforts to 
determine which factors are associated with age-related change in oli-
godendrocytes (Wang et al., 2020). Recent data predict that microglia 
could be the preponderant driver of age-related changes in 
oligodendrocytes. 

Recently, diffusion tensor imaging (DTI) allows novel approach to 
investigate microscopic features of white matter aging. In DTI, using 
fractional anisotropy (FA) and mean diffusivity (MD) can estimate the 
integrity of white matter (Liu et al., 2017). In aged brain, decrement of 
FA and increment of MD are observed, suggesting the age-related 
decrement of white matter integrity (Pietrasik et al., 2020; Vinke 
et al., 2018). Among them, MD showed the highest sensitivity in order to 
explain brain aging compared with FA and white matter volume (Vinke 
et al., 2018). Cognitive function including episodic memory, semantic 
memory and frontal executive function are proportionate to regional 
white matter integrity (executive function to frontal lobe white matter, 
episodic memory to temporal and parietal lobe white matter), but not 
associated with regional cortical thickness, emphasizing the importance 
of white matter in brain aging (Ziegler et al., 2010). A recent functional 
connectome study has elaborated on this trend (Damoiseaux, 2017), 
reinforcing the importance of white matter in brain aging. 

3. White matter and microglia in the aged brain 

3.1. Microglia and aged brain 

Similar to neurodegenerative diseases, inflammation is expected to 
be a cardinal aspect of the pathogenesis of brain aging (Koellhoffer et al., 
2017). Considering that microglia mediate inflammatory responses in 
the brain, these cells are likely to be among the most important players 
in brain aging (Angelova and Brown, 2019; Mattson and Arumugam, 
2018). Recent human data determined number and morphology of aged 
microglia (Shahidehpour et al., 2021). The data revealed out that total 
number of microglia and proportion of hypertrophic microglia were 
proportional to the age. In another study, dendrites of aged microglia are 
also shorter and less branched than those of young microglia (Damani 
et al., 2011; Koellhoffer et al., 2017). In the other hand, numerous 
studies examined functional aspect of aged microglia. In the aged brain, 
the phagocytic function of microglia is decreased (Bliederhaeuser et al., 
2016; Yanguas-Casas et al., 2020). Notably, senescent microglia are 
more likely to produce pro-inflammatory cytokines, such as tumor ne-
crosis factor (TNF)-α, interleukin (IL)− 1β, IL-6, and IL-10 (Angelova 
and Brown, 2019; Sierra et al., 2007; Sikora et al., 2021). 

In transcriptome analysis of microglia in aged mice, expression of 
proteins associated with inflammatory response such as lipid-related 
phagocytosis, pattern recognition, and antigen presentation are up- 
regulated (Pan et al., 2020; Raj et al., 2017). Single-cell RNA 
sequencing also identified several microglia clusters which were asso-
ciated with aging, present pro-inflammatory phenotype (Hammond 
et al., 2019). In addition to their inflammatory and phagocytic proper-
ties, microglia modulate the functions of other glial cells or directly 
affect neurons. Recent studies suggest that microglia function as ‘con-
ductors’ of oligodendrocytes through immune modulation, manipu-
lating the recruitment, differentiation, and re-myelination of OPCs (Lee 
et al., 2019). In addition, microglia are known to play a role in synaptic 
plasticity by participating in synaptic pruning (Kim et al., 2013). They 
are also thought to induce a specific subtype of astrocytes called A1 
astrocytes, which are deficient for phagocytosis of myelin debris and 

exert highly neurotoxic effects (Liddelow et al., 2017). 

3.2. Microglia in white matter of the aged brain 

Previously, monkey study had revealed out that inflammatory 
response, such as microglial activation is upregulated in aged in-
dividuals (Sloane et al., 1999). In human studies, it has been shown that 
the increase in the number of microglia during aging is concentrated in 
the white matter (Gefen et al., 2019; Raj et al., 2017). Furthermore, the 
number of microglia positive for MAC-2, an indicator of phagocytic 
microglial subpopulations, is significantly upregulated in white matter, 
but not in gray matter (Raj et al., 2017). Interestingly, old adults who 
had better cognitive function than other elderly people, named 
“Superagers”, had significantly less microglia in cortical white matter 
than in other old adults (Gefen et al., 2019). 

Myelin debris accumulates in aged white matter. This debris is 
phagocytosed by microglia, which keep the white matter clean. A pre-
vious study showed that, after treatment with cuprizone, a copper- 
chelating agent that stimulates demyelination, microglia in aged mice 
contained more internalized myelin debris than microglia in young mice 
(Safaiyan et al., 2016). 

TREM2 (triggering receptor expressed on myeloid cells 2), an 
important factor in immune responses in microglia, is thought to be a 
key protein involved in clearing myelin debris. TREM2 is considered an 
important genetic risk factor for diverse neurodegenerative disorders, 
including AD (Carmona et al., 2018). In addition, TREM2 promotes 
phagocytosis of amyloid beta (Aβ) protein in AD (Baik et al., 2016; Kim 
et al., 2017). Recent work showing that re-myelination after cuprizone 
treatment is impaired in Trem2-knockout mice compared with normal 
mice (Poliani et al., 2015) suggests that TREM2 is also associated with 
brain aging, especially as related to clearing myelin debris in white 
matter. The number of cells positive for Iba-1 (ionized calcium-binding 
adaptor molecule 1), a macrophage marker, increases in normal mice 
during aging, but is not significantly increased in Trem2-knockout mice. 

The fact that phagocytosis is upregulated only in white matter in 
aged mice has led to the hypothesis that microglia present in white 
matter might be different from those in gray matter. To test this, 
Safaiyan et al. performed single-cell RNA sequencing of the mouse brain 
and compared gene expression in microglia between gray and white 
matter (Safaiyan et al., 2021). They discovered a subset of microglia that 
was present only in white matter and exhibited a distinct gene expres-
sion pattern compared with that in previously identified subsets, namely 
homeostatic microglia, activated microglia, and disease-associated 
microglia (DAM). This specific subset of microglia, termed ‘white--
matter associated microglia’ (WAM), is characterized by upregulation of 
DAM-associated genes encoding proteins related to lipid metabolism 
and phagocytosis. But unlike the case for DAM, formation of WAM is 
independent of APOE (apolipoprotein E) expression. WAM also show 
downregulation of genes expressed in homeostatic microglia, such as 
checkpoint genes. The WAM subtype was also found in re-analyses of 
pre-existing data obtained by other researchers. 

WAM clear myelin debris exuded from myelinated axons in white 
matter, and TREM2 is a key protein involved in resolving the resulting 
internalized myelin debris. Two major findings were observed in Trem2- 
knockout mice: absence of WAM and accumulation of myelin fragments 
in myelinated axons. These observations suggest that TREM2 is essential 
for formation of WAM. Moreover, the percentage of WAM among 
microglia in white matter is closely proportional to age. These results 
indicate that WAM provide a ‘defensive force’ in white matter against 
demyelinating stress associated with the aging process. 

Microglia with an accumulation of lipid droplets and distinct tran-
scriptional patterns compared with previously reported microglial states 
are observed in the aged brain, (Jung and Mook-Jung, 2020; Mar-
schallinger et al., 2020). Investigators named this subset of microglia 
‘lipid-droplet-accumulating microglia’ (LDAM). These microglia show 
impaired phagocytic function, increased release of reactive oxygen 
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species (ROS), and pro-inflammatory cytokines. 
Thus, it is possible to speculate that the observed cognitive decline 

and white matter degeneration during brain aging could be caused by 
dysfunction of senescent, lipid-laden WAM. This raises the question of 
whether replacing microglia could rejuvenate the aged brain. 

4. Can aged brain-associated white matter degeneration be 
reversed by replacing microglia? 

CSF1R (colony-stimulating factor 1 receptor) is thought to be 
essential for microglial survival. Brain microglia have been successfully 
eliminated by inhibitors of CSF1R and shown to recover several days 
after cessation of CSF1R inhibitor treatment (Elmore et al., 2014). Thus, 
several studies have investigated the possibility of using CSF1R in-
hibitors to repopulate microglia (Beckmann et al., 2018; Elmore et al., 
2018; Henry et al., 2020; Willis et al., 2020). In a mouse model of 
multiple sclerosis created using cuprizone, treatment with a CSF1R ki-
nase inhibitor (BLZ945) significantly suppressed demyelination (Beck-
mann et al., 2018), indicating that repopulating microglia can reduce 
the demyelination burden. It is also thought to increase neuronal sur-
vival and neuroprotection by inducing IL-6 in neurons (Willis et al., 
2020). IL-6 is known to have neuroprotective effects and induce nerve 
regeneration (Rothaug et al., 2016). 

Another study using the CSF1R inhibitor PLX5622 in aged mice 
showed that age-related changes in the morphology of microglia were 
reversed after repopulation of microglia (Elmore et al., 2018), restoring 
both cognitive and synaptic functions to levels similar to those in young 
mice. 

Restoring microglial metabolism might also be important in rejuve-
nating the aged brain. Prostaglandin E2 (PGE2) synthesis in myeloid 
cells is increased with age (Wu and Meydani, 2004). In human 
monocyte-derived macrophages (MDM), PGE2 specifically binds the 
prostaglandin E receptor, EP2, and inhibits energy production in aged 
myeloid cells. Blocking EP2 signaling in aged microglia was shown to 
rescue energy metabolism in these cells and reverse cognitive aging 
(Minhas et al., 2021). 

Rejuvenating microglial phagocytic function has also been consid-
ered as a therapeutic strategy. Treatment of AD model mice with 
interferon-γ was shown to restore inflammatory responses of microglia 
and increase phagocytic function (Baik et al., 2019). It has recently been 
discovered that expression of CD36, a protein important in phagocytosis 
of lipid metabolites by macrophages (Podrez et al., 2002), is markedly 
decreased in senescent microglia (Rawji et al., 2020). Moreover, over-
expression of CD36 in cultured microglia appeared to increase phago-
cytosis of myelin debris. Niacin (vitamin B3) is known to up-regulate 
CD36 expression in monocytes (Rubic et al., 2004), resulting in 
enhanced phagocytosis of myelin debris and recovery of cognitive 
function in aged mice (Rawji et al., 2020). 

5. Unresolved questions 

5.1. How does brain aging differ between mice and humans? 

As mentioned above, microstructural studies had shown that human 
and mice share similar aspects of age-related white matter degeneration. 
Also, DTI study in mouse model revealed that age-related decrement of 
white matter integrity was observed in wild type mice, even it was less 
severe than that in AD transgenic mice (Praet et al., 2018; Song et al., 
2004). 

However, age-related white matter degeneration is not significant in 
the macrostructural studies of mice. First, the volume of white matter 
does not decrease significantly in mice like it does in humans (Mahes-
waran et al., 2009; Rattray et al., 2017). Also, CMBs which were 
mentioned to be increased in healthy aged human population, are not 
increased in aged wild-type mice (Sumbria et al., 2018). The interesting 
finding is that white matter lesions were not observed even in extremely 

old mice, such as 20months old (Wei et al., 2020). These findings indi-
cate that, unlike humans, microstructural white matter damages do not 
lead to macrostructural white matter damages in mice. Why macro-
scopic age-related white matter degeneration is more prevalent in 
humans than in mice remains unclear, but understanding the basis for 
this difference could be a key for efforts to rejuvenate the aging brain. 
Considering that WAM play an important role in the white matter aging 
process, we tentatively speculate that WAM could be central to 
answering this question. Thus, further studies are needed to determine 
whether WAM are present in the brains of aged humans and compare 
WAM in humans to those in mice. 

Also important, considering differences between mice and humans 
with respect to brain aging, is the need for a specific mouse model that 
reproduces features of human brain aging. Among possible models are 
senescence-accelerated mouse (SAM) strains. These non-transgenic 
mouse models originate from the AKR/J strain and comprise 
senescence-resistance strains (SAMRs) and senescence-prone strains 
(SAMPs) (Shimada and Hasegawa-Ishii, 2011). SAMP strains include 
SAMP1, SAMP6, SAMP8, and SAMP10. Of these, SAMP10, derived from 
SAMP3, exhibits age-related phenotypes such as deficits in learning/-
memory and brain atrophy (Shimada et al., 1994; Takeda, 2009). In 
contrast to SAMR models, SAMP10 mice show significant age-related 
decreases in brain weight, with about a 10% loss at 15 months of age. 
Such age-related brain atrophy is observed predominantly in the frontal 
cortex, especially the prefrontal cortex, resembling findings in the aging 
human brain (Giorgio et al., 2010). Thus, SAMP10 mice could prove 
useful for studying brain aging. 

5.2. Comparing aged WAM versus young WAM 

WAM in mice brains appear as early as 1 month of age; however, at 
this age, the proportion of WAM in microglia in white matter is only 
1–2% (Safaiyan et al., 2021). The proportion of WAM increases as mice 
age, reaching ~9% at 24 months of age. However, how senescent WAM 
differ from young WAM is unclear. Comparing phagocytic function and 
expression of inflammatory cytokines in WAM between young mice and 
aged mice could be a good approach. A senescence-accelerated model 
could also be helpful for addressing these issues. For instance, microglia 
in the SAMP10 model show early age-related changes, even at 
12-months of age (Page et al., 2002). 

5.3. Is WAM a precursor to DAM? 

WAM share several characteristics with DAM found in AD mouse 
models. The proportion of WAM is also up-regulated in AD model mice 
compared with normal mice, reaching ~20% in 21-month-old AD model 
mice (Safaiyan et al., 2021). Notably, as is the case for DAM, TREM2 is 
essential for formation of WAM. These findings suggest that WAM are 
precursors to DAM. Confirming this could provide important clues for 
understanding the pathogenesis of AD. 

6. Hypothesis 

We can summarize the findings highlighted in this review in five 
comments. 

First, changes in white matter are crucial for brain aging. Second, 
senescent microglia produce pro-inflammatory cytokines and exhibit 
decreased phagocytic function. Third, inflammatory responses driven by 
microglia are concentrated in the white matter of the aged brain. Fourth, 
specific forms of microglia called WAM are observed in the white matter 
of the aged brain, and this microglial subpopulation is active in clearing 
myelin debris. Last, repopulation of microglia has neuroprotective and 
neuroregenerative potential in the damaged or aged brain. 

On the basis of these observations, we hypothesize that cognitive 
decline and white matter degeneration of the aged brain are caused by 
impaired function of senescent WAM, and that recovery of 
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malfunctioning senescent WAM can rejuvenate the aged brain (Fig. 1). 
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