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Abstract 

Anti-programmed death (PD)-1 therapy confers sustainable clinical benefits for non-

small cell lung cancer (NSCLC) patients, but only some patients respond to the 

treatment. Various clinical characteristics, including the PD-ligand 1 (PD-L1) level, are 

related to the anti-PD-1 response; however, none of these can independently serve 

as predictive biomarkers. Herein, we established a machine learning (ML)-based 

clinical decision support algorithm to predict the anti-PD-1 response by 

comprehensively combining the clinical information. We collected clinical data, 

including patient characteristics, mutations, and laboratory findings, from the 

electronic medical records of 142 NSCLC patients treated with anti-PD-1 therapy; 

these were analyzed for the clinical outcome as the discovery set. Nineteen clinically 

meaningful features were employed in supervised ML algorithms, including LightGBM, 

XGBoost, multilayer neural network, ridge regression, and linear discriminant analysis, 

to predict anti-PD-1 responses. Based on the prediction performance of each ML 

algorithm, the optimal ML was selected and validated in an independent validation set 

of PD-1 inhibitor-treated patients. PD-L1 expression, tumor burden, and neutrophil-to-

lymphocyte ratio could independently predict the anti-PD-1 response in the discovery 

set. ML platforms based on LightGBM and XGBoost using the combination of 19 

clinical features showed more significant prediction performance than on using 

individual clinical features. Both models showed higher significant prediction accuracy 

based on the cut-off value. Patients with higher cut-off values presented significantly 

longer median progression-free survival in the discovery and validation sets. 

Collectively, LightGBM and XGBoost offer a clinical decision support algorithm to 

predict the anti-PD-1 response in NSCLC patients. 
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Introduction 

Immune checkpoint inhibitors (ICIs), including programmed cell death protein 

1/programmed death-ligand 1 (PD-1/PD-L1) inhibitors, have resulted in prolonged 

survival and were approved as first- and second-line therapies in patients with 

recurrent/metastatic non-small cell lung cancer (NSCLC) [1,2]. PD-L1 protein 

expression has been approved as a biomarker for investigating the efficacy of PD-

1/PD-L1 inhibitors. PD-L1 expression is enriched in anti-PD-1/PD-L1 inhibitor therapy 

responders [3,4]. Nevertheless, fewer than 30% of NSCLC patients respond to anti-

PD-1 inhibitors [5]. Moreover, a substantial proportion of PD-L1-positive patients show 

no response to therapy, while a subset of PD-L1-negative patients do show. Therefore, 

PD-L1 expression alone may not comprehensively reflect the complexity of the 

response of the tumor microenvironment to PD-1 inhibitors. 

With increasing use of anti-PD-1 therapy, various clinical characteristics related to 

treatment response in NSCLC patients have been identified, such as 

neutrophil/lymphocyte ratio before immunotherapy, smoking history, performance 

status, sex, the presence of metastases and driver mutations, and pathology [6-14]. 

These factors are routinely examined in clinical practice prior to anti-PD-1 therapy and 

are collected in electronic medical records (EMRs). However, none of the clinical 

factors can accurately predict the response to anti-PD-1 therapy; thus, a model 

integrating these factors is needed. 

Recently, machine learning (ML)-based methods have been developed to predict 
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disease progression and treatment response in various diseases [15,16], ML tools can 

identify key features from complex datasets associated with a specific purpose and 

interest. The ML techniques, multilayer neural network (MNN), ensemble learning, 

support vector machine (SVM), and penalized regression have been widely employed 

in recent studies for developing predictive models to facilitate effective and accurate 

decision-making [8,17,18]. However, ML has not yet been extensively studied or 

employed in ICI-treated cancer patients. 

In this study, we explored and validated various predictive algorithms using an ML 

approach based on the clinicopathological factors of anti-PD-1-therapy‒treated 

NSCLC patients from prospectively collected data obtained from EMRs. We aimed to 

establish a clinical decision support system for prescribing anti-PD-1 therapy in 

NSCLC patients using clinicopathological information routinely collected during clinical 

practice. 

 

Materials and methods  

Patients 

Patients with histologically confirmed stage IV NSCLC who were treated with anti-

PD-1 therapy (nivolumab 2 mg/kg every 2 weeks or pembrolizumab 200 mg fixed dose 

every 3 weeks) at Yonsei Cancer Center (Seoul, Korea) between March 2014 and April 

2020 were included (n=192). Patients were divided into a discovery cohort—patients 

consecutively enrolled from March 2014 to January 2018—to explore the optimal 

algorithm and the validation set—patients enrolled after January 2018—to confirm the 

performance of the explored algorithm. Data, including patient characteristics, 

laboratory results, tumor size, genetic mutational status, metastatic sites, line of 

therapy, PD-1 inhibitor type, and response were prospectively collected from the 
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EMRs. The patients were treated intravenously with nivolumab at a dose of 3.0 mg/kg 

every 2 weeks or pembrolizumab at a fixed dose of 200 mg every 3 weeks. This study 

was approved by the Institutional Review Board (IRB no. 4-2016-0678) of our hospital. 

The need for informed consent was waived. 

 

Determination of PD-L1 expression in tumors 

PD-L1 expression was analyzed using PD-L1 IHC 22C3 pharmDx antibody (clone 

22C3; Dako North America, Inc., Carpinteria, CA, USA). PD-L1 expression in tumor 

cells was determined based on the percentage of PD-L1-expressing cells in each 

section, which was estimated in increments of 5%, except for a 1% positivity value. 

Patients were considered positive when at least 1% of the tumor cells expressed PD-

L1. 

 

Assessment of the clinical efficacy of anti-PD1 inhibitors 

 The treatment response was evaluated using chest and abdomen computed 

tomography (CT) scanning [19]. CT scanning was performed every 3 or 4 cycles during 

the treatment. Besides regular follow-ups, additional imaging was conducted based 

on the physician’s concerns. Clinical response to the PD-1 inhibitor was evaluated 

using the same imaging modalities and Response Evaluation Criteria in Solid Tumors 

(RECIST), v1.1. The primary outcome of clinical response (responder) was defined by 

radiographic evidence of complete response, partial response, or stable disease for at 

least 6 months. Lack of a clinical response (non-responder) was defined by 

progressive disease on serial CT scans or stable disease lasting less than 6 months. 

Progression-free survival (PFS) was defined as the time from the start of anti-PD-1 

therapy to PD or death. Overall survival (OS) was defined as the time from the start of 
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anti-PD-1 therapy to death from any cause. Patients were censored on April 2020 if 

alive and progression-free. Patients without a known date of death were censored at 

the time of last follow-up. Anti-PD-1 therapy-related adverse events were reported 

according to the Common Terminology Criteria for Adverse Events, v4.0. 

 

Clinical features and ML models 

We extracted clinicopathological factors known to be related to anti-PD-1 therapy 

through a comprehensive literature review. To avoid compounding effects, features 

dependent on other features were removed. We modified some variables to increase 

explanatory power and reduce complexity (Table S1). These selected features were 

used as variables for establishing an ML model. The best-performing ML techniques 

and associated hyperparameters were selected using leave-one-out cross-validation 

(LOOCV). We performed standardization and normalization for models that were 

affected by the data scale. The predictive models XGBoost, LightGBM, MNN, SVM, 

linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), ridge 

regression, and lasso regression were compared and used for analyses [20-26]. The 

relatively small sample size (n=192) was expected to be sensitive to any noise or 

randomness of partitioning data; therefore, we performed LOOCV to avoid high 

variance and select an appropriate model. 

 

Feature attribution analysis 

A local surrogate model was used to calculate the expected value of the 

contribution of each feature to the prediction. The additive feature attribution method 

proposed by Lundberg and Lee [27] was used: 
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𝑔(𝑧′) = ϕ0 + ∑ ϕ𝑖𝑧𝑖
′

𝑀

𝑖=1

, 

where 𝑧′ ∈ {0,1}𝑀, 𝑀 is the number of simplified features, ϕ𝑖 is the contribution of the 

feature i, and g is the local explanation model minimized difference between 𝑔(𝑧′) 

and 𝑓(ℎ𝑥(𝑧′)).  ℎ𝑥 maps simplified inputs to the original input, and when 𝑥′ is the 

simplified input of 𝑥  and 𝑥 = ℎ𝑥(𝑥′) , the explanation model 𝑔(𝑥′)  matches the 

original model 𝑓(𝑥). We used Shapley values for ϕ𝑖 for uniqueness and consistency 

of allocated contribution values: 

ϕ𝑖(𝑓, 𝑥) = ∑
|𝑧′|! |𝑀 − |𝑧′| − 1|!

𝑀!
[𝑓𝑥(𝑧′) − 𝑓𝑥(𝑧′\𝑖)]

𝑧′⊆𝑥′

 

Here, the LightGBM model had the highest accuracy; therefore, the contribution 

value was calculated directly through the Tree Explainer algorithm, and the 

contribution values of each weak leaner were combined using the law of aggregation 

property of the SHAP value. 

 

Results 

Patient characteristics 

In total, 192 patients with advanced NSCLC treated with anti-PD-1 therapy were 

included for analysis. Majority of patients were male (148/192, 77.1%), had 

adenocarcinoma (130/192, 67.7%), and were smokers (135/192, 70.3%); the median 

age was 64 years (range, 26–85 years). Thirty-one (17.6%) patients had driver 

mutations, including mutations in epidermal growth factor receptor (EGFR; n=25), 

anaplastic lymphoma kinase (ALK; n=2), and proto-oncogene tyrosine-protein kinase 

1 (ROS1; n=4). Regarding lines of therapy, 15 (7.0%), 77 (40.1%), and 100 (88.9%) 

patients received anti-PD-1 therapy as first-line, second-line, and more than second-
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line therapy, respectively. The most frequently developed metastatic site at baseline 

was the ipsilateral or contralateral lung (137/192, 71.4%), followed by the brain (69/192, 

35.9%), bone (56/192, 29.2%), and adrenal gland (34/192, 17.7%). 

The discovery (n=142) and validation cohorts (n=50) showed no significant 

differences in patient characteristics, including age, performance status, driver 

mutation status, line of therapy, and site of baseline metastasis (Table 1). 

 

Table 1. Baseline characteristics of the independent discovery and validation sets. 

 Discovery set Validation set  
 N (%) N (%)  

Age (years)    
Median 64 (26–85) 64 (38-82) 0.57 
Sex    
Male 101 (71.1) 47 (94.0)  
Female 41 (27.1) 3 (6.0) <0.05 
ECOG PS score    
0 20 (14.1) 4 (8.0)  
1 87 (61.3) 39 (78.0)  
2 20 (14.1) 6 (12.0)  
3 15 (10.6) 1 (2.0) 0.109 
Smoking    
Never 50 (35.2) 7 (14.0)  
Former smoker 55 (38.7) 41 (82.0)  
Current smoker 37 (26.1) 2 (4.0) <0.05 
Histology    
Adenocarcinoma 100 (70.4) 30 (60.0)  
Squamous 40 (28.2) 18 (36.0) 0.248 
Others 2 (1.4) 2 (4.0)  
EGFR, ALK, and ROS1    
Wild-type (all) 114 (80.3) 43 (86.0)  
Mutant  25(17.6) 

 
6 (12.0) 0.352 

Unknown 3 (2.1) 1 (2.0)  
PD-L1     
Positive 94 (66.2) 37 (74.0)  
Negative 38 (26.8) 13 (26.0)  
Unknown 10 (7.0) 0 (0.0) 0.145 
Prior treatment lines    
0 14 (9.9) 1 (2.0)  
1 51 (35.9) 26 (52.0)  
2 30 (21.1) 11 (22.0)  
≥3 47 (33.1) 12 (24.0) 0.097 
Location of metastasis    
Lung ipsilateral 99 (63.4) 29 (58.0) 0.50 
Lung contralateral 74 (52.1) 23 (46.0) 0.457 
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Brain 56 (39.4) 13 (26.0) 0.089 
Bone 43 (30.3) 13 (26.0) 0.567 
Adrenal gland 28 (19.7) 6 (12.0) 0.219 
Liver 22 (15.6) 8 (16.0) 0.932 

*Female and never smoker status had a phi coefficient of 0.839 (p < 0.001). § One ALK rearrangement and four 

ROS1 rearrangements were included; ¶One ALK rearrangement was included. 

 

Treatment outcomes in the discovery set and role of PD-L1 as a predictive 

biomarker 

In the discovery set, 56 responders and 86 non-responders were classified based 

on prespecified definitions, and a duration of response of 6 months was observed 

(Figure 1A). The responder group contained patients with a long duration of response 

(Figure 1A). The median PFS and OS (calculated from the date of anti-PD-1 treatment) 

for all patients were 8.28 and 13.54 months, respectively (Figure 1B). The PFS 

according to response was 22.14 (95% confidence interval[CI]=4.165–8.164) and 3.79 

months (95%CI=0.123–0.24) in responders and non-responders, respectively. 

Patients with more than 50% PD-L1 expression showed a significantly prolonged PFS 

compared with patients with less than 50% PD-L1 (21.76 months [95%CI=1.713–

3.799] versus 8.53 months [95%CI=0.263–0.583]; P=0.002). 

 

Figure 1. PD-L1 expression is not a promising predictive biomarker of anti-PD-1 

therapy response in NSCLC patients. (A) Swimmer’s plot of anti-PD-1-treated 

patients with advanced NSCLC (stage 4; n=138). The left heatmap shows results of 

RECIST (red, partial response; gray, stable disease; blue, progressive disease), and 

the right heatmap shows the results of RECIST-based responses (orange, responder; 

black, non-responder). The colors of the lines and symbols are labeled in the symbol 

index (lower bottom index). (B) Kaplan-Meier plot for progression-free survival (PFS) 

in responders, non-responders, and all patients. Statistical analysis was performed 
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using the log-ranked method (****P < 0.0001). (C) Kaplan-Meier plot for PFS based 

on PD-L1 expression (≥50% and < 50%). **P < 0.01. 

 

 

Overall study development scheme 

To establish an optimal prediction algorithm for anti-PD-1 therapy, we collected 

datasets, tested multiple ML algorithms, and conducted cross-validation in the 

discovery set. We also used selected algorithms with an independent validation set 

(Figure 2). After collecting all available clinical features originating from EMRs, we 

selected the relevant clinical features by knowledge-based clinical insights and feature 

selection methods. The pre-feature selection process revealed 19 of the 60 features 

to be associated with clinical outcome (Table S1). Preprocessing was used to prepare 

these 19 features for ML by normalization, categorization, and outlier exclusion. We 

selected and then tested nine types of ML models as clinical decision-supporting 

systems for predicting disease progression. The prediction performances of these nine 

ML models were compared, and two optimal prediction models were chosen. An 

additional 50 NSCLC patients were evaluated using the two ML algorithms to assess 

anti-PD-1 responses (Figure 2). 

Figure 2. Dataset generation and application of ML methods for prediction of 

anti-PD-1 responses in patients with NSCLC. The dataset was generated from 

radiological, hematological, histological, and clinical features. The clinically important 

features were filtered according to ontological meanings, and asymmetric features 

were removed. All features were normalized and categorized, and some outliers were 

removed. In total, 138 patients in the discovery dataset were analyzed by ML 
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algorithms, including deep learning, LightGBM, random forest, SVM, ridge/lasso 

regressions, and logistic regression. The performance of individual ML algorithms was 

compared based on area under the receiver operating characteristic curve (AUC) 

values and cross-validation [10-fold, leave-one-out cross-validation (LOOCV)]. The 

validation dataset was organized (n=50), and responses to anti-PD-1 were predicted. 

 

Clinical feature selection for ML 

Heatmaps were used to visualize 10 representative features related to treatment 

outcomes for anti-PD-1 therapy in the discovery cohort (Figure 3A). Several single 

clinical features were found to be enriched in the responders. There were significant 

correlations between PD-L1 expression (cut-off 50%) and response (P=0.016) (Figure 

3B). The positive predictive value (PPV, response rate above the cut-off) was 55.3% 

(26/47), whereas the negative predictive value (NPV, nonresponse rate below the cut-

off) was 67.0% (55/82). These findings suggested that predictability could be further 

improved. PD-L1 expression, tumor burden and neutrophil-to-lymphocyte ratio (NLR) 

were significantly related to the anti-PD-1 response (Figure 3C, D). In two examples 

of discrepancy between PD-L1 expression and clinical response, one patient without 

PD-L1 expression (PD-L1=0%) showed a favorable response (PFS: 35.7 months, OS: 

49.3 months; Figure 3E), whereas another patient with high PD-L1 expression (PD-

L1, 100%) showed a poor response (PFS: 1.2 months, OS: 2.17 months; Figure 3F). 

Figure 3. Clinical features and anti-PD-1 responses. (A) Anti-PD-1 responder 

prediction demonstrated by a heatmap (red, responder; black, non-responder). 

Individual prediction scores were divided by Youden index-based cut-off values. (B) 

Scores for the LightGBM model were statistically analyzed (Fisher’s exact test, p > 

0.0001). (C) Scores for the XGBoost model were statistically analyzed (Fisher’s exact 
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test, p > 0.0001). (E) A representative CT image of an anti-PD-1 responder showing 

no PD-L1 expression in the tumor. (F) A representative CT image of an anti-PD-1 non-

responder showing PD-L1 expression in the tumor. 

 

 

ML-based prediction of anti-PD-1 responders 

We hypothesized that the comprehensive integration of clinical features rather than 

a single clinical feature may provide important clues to predict anti-PD-1 treatment 

outcomes. Therefore, we attempted to develop an optimal prediction model by 

integrating selected clinical features using ML algorithms. We tested the performance 

of nine ML models, including LightGBM, XGBoost, MNN, ridge regression, LDA, 

Gaussian process, SVM, lasso regression, and QDA, using the discovery cohort.  

Figure 4A lists all ML models derived from our discovery set in order of accuracy. 

The heatmap shows the estimated anti-PD-1 responses in NSCLC patients in the 

discovery set. Patients are indicated as responders or non-responders using black or 

red bars based on the specific cut-off value for each model. The Youden index was 

used as cut-off value. Area under the curve (AUC) values were used for all models 

(Figure S1A, B). The top two most accurate prediction models were derived from 

LightGBM and XGBoost algorithms, which both showed significant correlations. The 

AUC of the two models were 0.834 and 0.824, respectively. Both models significantly 

predicted responders when the cut-off was 0.452 and 0.476, respectively (Figure 4B, 

C). The PPV was 73.4% (47/64) and 73.0% (46/63) and the NPV was 88.4% (69/78) 

and 87.3% (69/79) in LightGBM and XGBoost models, respectively. These two models 

also showed significant differences between PFS, indicating that our models could be 

used for predicting the durability of treatment. 
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Both models showed higher significant prediction accuracy by cut-off value (P < 

0.001, PPV=73.4%, NPV=88.4% in LightGBM, P < 0.001, PPV=73.0%, NPV=88.4% 

in XGBoost). The patients with a cut-off ≥ 0.452 in LightGBM and ≥ 0.476 in XGBoost 

presented a significantly longer median PFS than those with lower cut-off value (20.5 

vs. 3.38 months, P < 0.0001 in LightGBM, 20.5 vs. 3.62 months P < 0.0001 in XGBoost) 

in the discovery cohort (Figure 4D). The cut-off level for these models could 

discriminate PFS in the response to anti-PD-1 therapy. 

Figure 4. Machine learning-based prediction of anti-PD-1 responders. (A) 

Individual features analyzed and reported as SHAP values and interaction scores 

using the LightGBM model. Feature prediction values are shown as different colors 

(high, yellow; low, blue). (B) Hierarchical clustering of feature correlation. Individual 

features were analyzed (top two major clusters are indicated by green and red). (C) 

Heatmap of feature correlation. Highly correlated groups are indicated in yellow, 

whereas groups with less strong correlations are indicated in black. (D) Kaplan-Meier 

plot of anti-PD-1-treated patients with NSCLC using LightGBM and XGBoost model-

based prediction in the discovery set. The red line indicates the predicted responder 

group and the black line indicates the non-responder group. The left plot is for 

LightGBM and the right plot is for XGBoost. The log-rank methods were used for 

statistical analyses between responder and non-responder groups (****p < 0.0001). 

 

 

Feature contribution in the LightGBM model 

Each of the 19 selected clinical features was respectively analyzed to determine 

its contribution to LightGBM. The most prominent feature was on the top, and the least 

prominent feature was on the bottom; each distribution plot shows the local 
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contribution value. The presence of non-measurable tumor lesions resulted in a high 

SHAP value (0.31), whereas low feature values were related to high SHAP values. 

Thus, a lower presence of non-measurable tumor lesions would indicate better anti-

PD-1 therapy. The NLR showed a high SHAP value (0.32), whereas a lower NLR was 

related to a better anti-PD-1 response. The PD-L1 percentage was also related to the 

SHAP value (0.32), and higher PD-L1 percentages indicated better anti-PD-1 

responses (Figure 5A). The results of hierarchical clustering based on the correlations 

of feature contribution, PD-L1 percentage, immunotherapy type, smoking dosage, and 

pathology demonstrated positive correlations with anti-PD-1 therapy, whereas the 

other factors showed negative correlations with anti-PD-1 therapy (Figure 5B). 

Significant correlations between each selected clinical feature were not observed 

(Figure 5C). 

Figure 5. SHAP values and feature interaction scores in LightGBM-based 

prediction. (A) SHAP values of individual features were measured. The key color 

indicates the feature value (high, yellow; low, blue). The SHAP value indicates the 

response to anti-PD-1 treatment. (B) Hierarchical clustering of feature correlation. 

(C) Heatmap of feature correlation (high, yellow; low, blue). 

 

Validation of the performance of LightGBM and XGBoost models in an 

independent set 

The LightGBM and XGBoost models were chosen as the optimal models to predict 

anti-PD-1 therapy response using the discovery set. We next verified their 

performance using an independent validation set, which was composed of 26 

responders and 24 non-responders and showed a long duration of response in 

responders (Figure 6A). The median PFS and OS in total patients in the validation set 
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were 5.3 and 13.2 months, respectively. The cut-off values (0.452 in the LightGBM 

model and 0.476 in the XGBoost model) determined in the discovery set were then 

applied to evaluate the predictive performance of each model (Figure 6B, C). The 

PPV was 81.4% (22/27) and 81.4% (22/27) and the NPV was 82.6% (19/23) and 82.6% 

(19/23) in LightGBM and XGBoost models, respectively. The patients with a cut-off 

value ≥ 0.452 in LightGBM and ≥ 0.476 in XGBoost presented a significantly longer 

median PFS than the others (10.9 vs. 1.8 months, P < 0.01 in LightGBM, 10.9 vs. 1.84 

months P < 0.01 in XGBoost) (Figure 6D), suggesting these models predicted PFS in 

response to anti-PD-1 therapy in the validation set. 

Figure 6. Validation of machine learning-based prediction algorithms for anti-

PD-1-treated patients with NSCLC. The validation set of patients with NSCLC was 

analyzed using the two best machine learning algorithms, LightGBM and XGBoost. 

(A) Swimmer’s plot of anti-PD-1-treated patients with advanced NSCLC (stage 4; 

n=50). The left heatmap shows the results of RECIST (red, partial response; gray, 

stable disease; blue, progressive disease), and the right heatmap indicates RECIST-

based responses (orange, responder; black, non-responder). The colors of the lines 

and symbols are labeled in the symbol index (lower bottom index). (B) Scores of the 

LightGBM model and statistical analysis. (C) Score of the XGBoost model and 

statistical analysis (D) Kaplan-Meier plot of anti-PD-1-treated patients with NSCLC 

using LightGBM and XGBoost model-based prediction in the validation set. The red 

line indicates the predicted responder group and the black line indicates the non-

responder group. The left plot is for LightGBM and the right plot is for XGBoost. The 

log-rank methods were used for statistical analyses between responder and non-

responder groups (**p < 0.01). 
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Discussion 

IHC-based PD-L1 expression is the only approved predictive marker for anti-PD-1 

therapy, but its accuracy is not sufficient to discriminate the responders from non-

responders. Recently, the tissue and blood tumor mutational burden was also 

assessed as a potential biomarker independent of PD-L1 expression. However, like 

PD-L1, the results for tumor mutational burden may vary according to different 

sequencing platforms, and testing costs are high for routine clinical practice. Therefore, 

the accuracy of the available biomarkers is still insufficient for deciding whether to treat 

patients with anti-PD-1 therapy. 

The associations of various clinical factors or blood test values in routine practice 

with treatment outcomes following anti-PD-1 therapy are increasingly being reported. 

However, the practical clinical application of these findings is limited because these 

clinical factors and blood test results have been sporadically reported and only simple 

statistical analyses such as univariate or multivariate have been produced. To 

establish a predictive model for anti-PD-1 therapy with comprehensive integration of 

relevant clinical factors, we collected various clinical features from NSCLC patients 

treated with anti-PD-1 therapy. We selected 19 clinically relevant features from EMRs 

based on our knowledge, including PD-L1 expression, tumor burden, NLR, smoking 

years, previous line of therapy, ECOG, and the presence of brain, liver, bone, and 

adrenal metastases. These factors are evaluated in routine clinical practice and do not 

require additional cost or efforts. The performance of each clinical feature was tested 

in the discovery set. The top three features to predict an anti-PD-1 response were PD-

L1 expression, tumor burden, and NLR. For comprehensive integration of clinical 

features and correlative analysis with treatment outcomes, we used ML platforms. 

Nine ML platforms were tested using these selected 19 clinical features, and the 
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LightGBM and XGBoost models were chosen to best predict the anti-PD-1 response. 

Compared to the prediction performance of each single clinical feature, ML based on 

LightGBM and XGBoost using the combination of clinical features showed more 

significant performance. Both models showed higher significant prediction accuracy 

by cut-off value. The patients with values above the cut-off of the models presented a 

significantly longer median PFS than those with values below the cut-off. Therefore, 

the cut-off level for these models could discriminate PFS in response to anti-PD-1 

therapy. 

ML is widely used in many areas within the healthcare industry, from diagnosis and 

prognosis to drug development, and has significant potential to transform the medical 

landscape [28]. Indeed, there is a growing realization of the potential of ML as a 

platform that can integrate information from numerous sources for improvement of 

decision-making processes for highly skilled workers [28]. Therefore, the potential to 

utilize ML to aggregate large datasets could significantly accelerate the process of 

disease identification. Several recent studies have used ML methods to predict 

immunogenicity and response to certain therapies. For example, Bao et al. [29]. 

reported the immune landscape and a novel immunotherapy-related gene signature 

associated with better clinical outcomes in early-stage lung adenocarcinoma using an 

ML method. Additionally, Duhaze et al. [30]. reported the prediction of immunogenicity 

for biotherapies using patient- and drug-related factors with massive amounts of data 

from ML algorithms. To the best of our knowledge, this is the first study to apply ML to 

establish a clinical decision support algorithm for anti-PD-1 therapy in NSCLC patients. 

The LightGBM and XGBoost models selected from the nine ML methods tested 

here are ensemble-based boosting algorithms. LightGBM is a gradient boosting 

framework that uses a tree-based learning algorithm. LightGBM can handle large 
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datasets and takes less memory to run, yielding highly accurate results. This algorithm 

also supports GPU learning; therefore, data scientists are widely using this model for 

developing various data science applications. Here, we also applied a random forest 

model and confirmed the predictive ability with the same discovery set. This was as 

robust as our LightGBM or XGBoost model; however, the prediction ability was 

significantly reduced when a new validation set was added (data not shown). 

Although they use the same ensemble model, LightGBM and XGBoost are both 

able to reduce variance and bias. Additionally, this type of ML model trains a new type 

of model from a preconstructed model. The boosting algorithm employs AdaBoost and 

gradient boosting methods. Owing to the high analytical efficiency of gradient 

enhancement technology, its use exceeds that of AdaBoost. However, the limitations 

of the boosting method are related to speed and overfitting. To overcome this problem, 

the XGBoost model was developed. XGBoost can compensate for various problems 

such as overfitting and prediction power, but is still limited in terms of running time. 

LightGBM can handle large datasets and requires less memory to obtain highly 

accurate results. 

Here, these two models showed comparable predictability. In the clinic, we 

recommend using LightGBM, which is sufficiently robust to analyze datasets, even 

with lower computational resources. ML models recognize complex patterns in the 

data and model the degree to which each feature affects the prediction for each pattern. 

Therefore, they perform better than typical linear models when features are not 

independent. 

Overall, we obtained more accurate results using LightGBM and XGBoost than 

using PD-L1 alone by employing data collected noninvasively to stratify patients 

according to feature patterns and by using nonlinear models to make predictions 



 20 

based on each pattern. These models, based on clinical features, can serve as useful 

clinical decision-supporting algorithms that predict anti-PD-1 response in NSCLC 

patients. 
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