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Abstract
Background Esophagogastroduodenoscopy (EGD) is generally a safe procedure, but adverse events often occur. This high-
lights the necessity of the quality control of EGD. Complete visualization and photo documentation of upper gastrointestinal 
(UGI) tracts are important measures in quality control of EGD. To evaluate these measures in large scale, we developed an 
AI-driven quality control system for EGD through convolutional neural networks (CNNs) using archived endoscopic images.
Methods We retrospectively collected and labeled images from 250 EGD procedures, a total of 2599 images from eight loca-
tions of the UGI tract, using the European Society of Gastrointestinal Endoscopy (ESGE) photo documentation methods. The 
label confirmed by five experts was considered the gold standard. We developed a CNN model for multi-class classification 
of EGD images to one of the eight locations and binary classification of each EGD procedure based on its completeness.
Results Our CNN model successfully classified the EGD images into one of the eight regions of UGI tracts with 97.58% 
accuracy, 97.42% sensitivity, 99.66% specificity, 97.50% positive predictive value (PPV), and 99.66% negative predictive 
value (NPV). Our model classified the completeness of EGD with 89.20% accuracy, 89.20% sensitivity, 100.00% specificity, 
100.00% PPV, and 64.94% NPV. We analyzed the credibility of our model using a probability heatmap.
Conclusions We constructed a CNN model that could be used in the quality control of photo documentation in EGD. Our 
model needs further validation with a large dataset, and we expect our model to help both endoscopists and patients by 
improving the quality of EGD procedures.
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Upper gastrointestinal endoscopy, also known as esophago-
gastroduodenoscopy (EGD), plays an important role in the 
diagnosis and treatment of upper gastrointestinal diseases. 
Because numerous trials demonstrated the importance of 
screening for gastric cancer in improving its prognosis, 
South Korea and Japan, two of the countries with the high-
est rates of gastric cancer, included endoscopic screening in 
a national cancer-screening program [1–3]. The demand for 
EGD, which is a useful gastric cancer-screening method, 
has increased rapidly every year [4]. Even though EGD is 
generally a safe procedure, the number of adverse events has 
increased with the number of procedures, which highlights 
the necessity of EGD quality control [5]. In addition to the 
adverse events resulting from EGD, an increasing number 
of legal actions justifies the need for standard quality control 
to protect both patients and endoscopists.

The quality of a cancer-screening program should be 
evaluated by its power to identify lesions [6]. However, 
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this outcome measure cannot be applied to individual EGD 
procedures because of the low incidence of gastric cancer. 
Instead, the quality of EGD can be evaluated using other 
indicators; the completeness of visualization and photo 
documentation of the upper gastrointestinal (UGI) tracts, 
from the upper esophageal sphincter to the second portion 
of the duodenum, is an important measure in rating the per-
formance of each EGD. The first and most widely accepted 
image documentation guideline was introduced by the Euro-
pean Society of Gastrointestinal Endoscopy (EGSE), recom-
mending the acquisition of images of eight particular UGI 
landmarks [7]. Other guidelines and recommendations have 
been proposed since then, but they have not shown much dif-
ference from the EGSE method [8, 9]. However, to evaluate 
the quality of all EGD procedures would require consider-
able funds, manpower, and time.

Meanwhile, the recent advancement of convolutional 
neural networks (CNNs) has made it possible to apply arti-
ficial intelligence (AI) to almost every industry; its appli-
cations were successful in many areas of the medical field 
[10], especially in image recognition and classification. In 
the field of gastrointestinal endoscopy, AI has been actively 
applied and shown promising results in the identification 
and classification of colon adenoma using colonoscopic 
images [11–13]. Furthermore, several studies showed the 
success of AI applied to EGD images in the diagnosis of 
Barrett’s esophagus, esophageal cancer, stomach cancer, 
and helicobacter pylori infection [14–17]. Based on these 
accomplishments of AI applications in endoscopic images, 

we developed an AI-driven quality control system for EGD 
using CNNs with endoscopic images.

Materials and methods

Study design and methods

A total of 13 endoscopists performed EGD at Korea Uni-
versity Anam Hospital, Seoul, Korea in January 2019. 
Images of EGD performed for screening are included in this 
study. Images were taken using standard upper endoscopy 
(GIF-H260, GIF-Q260, GIF-H290, GIF-HQ290; Olympus 
Medical Systems, Co. Ltd., Tokyo, Japan) and a standard 
endoscopic system (EVIS LUCERA ELITE CV-290/CLV-
290SL; Olympus Medical Systems, Co. Ltd., Tokyo, Japan).

For the analysis, we collected 2599 gastroendoscopic 
images of 250 patients from the hospital Picture Archiving 
and Communication System. Prior to the image collection, 
we reviewed the endoscopic reports and excluded cases with 
mucosal abnormalities. The images were labeled based on 
the eight UGI landmarks according to the EGSE recommen-
dation (Fig. 1) [7]. Five endoscopists, who had more than 
three years of experience in endoscopy and were blinded to 
the study, labeled each image in a separate room, and differ-
ences were resolved by majority decision. We also extended 
our study to validate inspection completeness of EGD pro-
cedures at the patient-level. Patient-level image statistics are 
shown in Table 1. To reduce selection bias, we collected 

Fig. 1  Upper gastrointestinal 
(UGI) landmarks (A–H) accord-
ing to the European Society 
of Gastrointestinal Endoscopy 
EGSE recommendation [7]. A 
proximal esophagus; B GEJ or 
Z-line; C stomach cardia and 
fundus on retroflexed view; D 
stomach body; E stomach angle; 
F stomach antrum; G duode-
nal bulb; H the second part of 
duodenum
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EGD images of 200 consecutive patients with complete 
visualization and 50 consecutive patients with incomplete 
visualization. The images were then labeled, fed into the 
CNN model, and classified into one of the eight locations. 
We utilized this classification result to check whether an 
inspection contains all the eight positional images.

An Intel® Xeon® CPU E5-2650 v4 @ 2.20 GHz machine 
equipped with 128 GB RAM was used to conduct all the 
experiments in this study. A total of eight NVIDIA TITAN 
Xp GPUs have been configured with the machine. However, 
we utilized only one GPU for the entire experiment. The 
proposed model was developed with PyTorch 1.1.0 using 
Python 3.6.8 in an Ubuntu 16.04.5 LTS environment [18].

Training and testing image sets preparation

We divided the entire dataset into ten cross-validation folds 
so that all images of one patient were placed together in 
either a training or validation/test set. Therefore, the sets 
were constructed in a manner that images from the same 
patient did not overlap among the training and validation/test 
sets. The statistics for different folds are shown in Table 2.

Preprocessing

Images captured during the EGD procedure include a black 
region that is left after removing the patient information. 
For deep learning models, such noise may hinder the train-
ing procedure and can impede the development of a robust 
model. Thus, we removed the unnecessary black portion 
from each image of the dataset by using automatic cropping, 
to minimize human intervention and maximize the utility of 
AI. The black portion of the image was removed effectively 
based on pixel statistics.

Obtaining a region of interest (ROI) from an image can 
be achieved using various techniques. We utilize the fact 
that most of the pixel values in the black region are close 
to 0 (on the scale from 0 to 255). Our cropping strategy is 
to calculate the mean pixel value of each row of the image 

to differentiate between almost black rows and those rows 
containing useful RGB values. At the edge of our target ROI, 
the mean pixel value is significantly different from the mean 
pixel value of the black region. This phenomenon holds for 
the column-wise mean pixel value as well. Based on these 
values, we derive a rectangular bounding box with a left 
top point (x1, y1) and bottom right point (x2, y2) for crop-
ping the informative region of the image. This process is 
illustrated in Fig. 2. Through this preprocessing step, we 
produced a more pertinent image than the original one and 
were able to train the CNN with more relevant information.

We applied the following data augmentation methods to 
the images: changing the aspect ratio and scaling after ran-
dom cropping, using random rotations, and horizontal flips. 
Then, the input images were resized to 224 × 224 pixels in 
order to be compatible with the proposed network. Before 
being fed to the training network, an input image is normal-
ized by channel-wise mean subtraction and divided by the 
standard deviation using ImageNet mean and standard devia-
tion values, respectively [19].

CNN model construction

In a conventional image classification task, CNNs take 
advantage of multiple consecutive convolutional layers 
to extract important latent features from a given image. 
The outputs predict the likelihood across different classes 
through the fully connected layers. In this study, we lev-
eraged a state-of-the-art CNN model called squeeze-and-
excitation network (SENet) to validate our target EGD 
inspection task [20]. We utilized pre-trained models with 
weight initialization technique to improve the performance 
and convergence speed [21, 22]. The proposed CNN was 
fine-tuned by training for 200 epochs using Adam optimizer 
[23]. The initial learning rate was set to 0.001, and then an 

Table 1  Dataset composition 
(image-level)

Endoscopic land-
marks

Number 
of images

A 345
B 348
C 379
D 406
E 273
F 302
G 250
H 296
Total 2599

Table 2  Statistics of different folds

Fold Number of patients/cases Number of images

Complete 
inspection

Incomplete Complete 
inspection

Incomplete

1 20 5 226 56
2 20 5 233 58
3 20 5 212 37
4 20 5 213 44
5 20 5 233 35
6 20 5 207 46
7 20 5 216 39
8 20 5 201 37
9 20 5 203 54
10 20 5 202 47
Total 200 50 2146 453
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exponential-like learning rate scheduling was applied to train 
our model.

For the conventional multi-class classification task, a 
neural network is usually trained by using the cross-entropy 
loss ( L

CE
 ) function. The loss function provides a gradient 

for the output layer, and the gradient is then backpropagated 
to the previous layers to create an updated direction for the 
weights. However, our study is slightly different from the 
classical multi-class context as all of the eight positional 
EGD images are closely related and share similar features. 
In this context, developing a robust classifier by using only 
a cross-entropy loss would be challenging, so we introduced 
an additional loss function called a positional loss ( L

Pos
).

Due to anatomical structure, after observing a certain 
location during EGD examination, the next observing 
location is inevitably near the previous site. Although 
not always applicable, we applied this regression prob-
lem setting in our model to improve the outcome. We 

added a regression head in addition to the classification 
head just after CNN feature extractor. We penalized the 
model by calculating mean square error (MSE) between 
ground-truth value (1 to 8) and the predicted value using 
the regression head and added this loss value to the cross-
entropy loss as well. Intuitively, we forced the network to 
learn both an image class and its positional value concur-
rently. Hence, we trained the network by optimizing the 
two loss functions, ( L

CE
 ) and ( L

Pos
 ), simultaneously. A 

brief overview of the training procedure is shown in Fig. 3.
Additionally, expanding on the results obtained from 

the multi-class classification task, we defined inspection 
completeness as a binary classification task: an inspection 
is evaluated as complete or incomplete. For an individual 
patient, the assessment is considered complete when the 
EGD test covers all the eight positional images. Otherwise, 
the EGD test is counted as incomplete.

Fig. 2  Removing the black region of an image using image statistics. 
The color lines in the middle sub-figure indicate the column-wise 
mean value of RGB channels with color code red, green, and blue, 

respectively. Similarly, the row-wise mean value can be applied for 
removing the black region as well (Color figure online)

Fig. 3  The overall classification pipeline of the proposed model. An 
input image is first preprocessed by removing the black region from 
it and then normalized before being fed to the network to train. After-
wards, the model is trained by jointly optimizing the loss functions—

a cross-entropy loss ( L
CE

 ) and a positional loss ( L
Pos

 ). Finally, the 
softmax layer predicts the likelihood through fully-connected (FC) 
layers across eight positions (A–H)
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Finally, we visualized the class activation map using 
gradient-weighted class activation mapping (Grad-CAM) to 
investigate whether the model’s decision was made based 
on the desired area of the image. This technique uses class-
specific gradient knowledge that flows into the final convo-
lutional layer of the CNN to generate a localization map of 
the important regions in the given image [24].

Outcome measures

The main outcome measure of the study was classification 
accuracy, but we also measured sensitivity, specificity, posi-
tive predictive value (PPV), and negative predictive value 
(NPV). The following are the definitions we used to calcu-
late the evaluation metrics, expressed as percentages.

• Accuracy is the proportion of true-positive, and true-
negative images among the total images examined.

• Sensitivity is the proportion of true-positive images 
among true-positive and false-negative images.

• Specificity is the proportion of true-negative images 
among true-negative and false-positive images.

• PPV is the proportion of true-positive images among 
true-positive and false-positive images.

• NPV is the proportion of true-negative images among 
true-negative and false-negative images.

Results

Image collection

Table 1 shows the composition of the dataset according 
to the UGI landmarks. A total of 2599 images were col-
lected and annotated as eight different UGI locations for 
the subsequent multi-class classification. Then, our dataset 
was re-organized to evaluate the completeness of the EGD 
procedures. In the 2599 images from the 250 EGD cases, 
200 complete cases and 50 incomplete cases were included. 
Table 2 shows the statistics of the patients and the number 
of images for the different folds.

Multi‑class classification

Our experiments focused on two tasks: multi-class classifi-
cation and validation of inspection completeness. In multi-
class classification, the aim was to categorize each image 
into one of the eight locations of the UGI tracts as shown in 
Fig. 1. Our proposed CNN model classified the correspond-
ing location of an image with 97.58% accuracy, 97.42% 
sensitivity, 99.66% specificity, 97.50% PPV, and 99.66% 
NPV. These performance results were consistent across the 
ten different folds. Table 3 shows the model performance 
for the multi-class classification task, and Fig. 4 shows the 
confusion matrix.

Inspection completeness

In this task, we aimed to validate inspection completeness by 
expanding the results obtained from the multi-class classifi-
cation task. The main goal of the task was to assess whether 
the proposed model can evaluate the completeness of an 
EGD procedure, an image set consisting of eight or more 
positional photos. Our proposed CNN model classified the 
completeness of the visualization of EGD procedure with 
89.20% accuracy, 89.20% sensitivity, 100.00% specificity, 
100.00% PPV, and 64.94% NPV. Figure 5 shows the con-
fusion matrix describing the performance of the model in 
this task. In incorrectly classified sets, the model failed to 
identify a complete inspection only by one image location 
out of the eight locations for nearly all cases.

Visual explanation

We applied a probability heatmap to the classified images 
to understand the working of our model and to improve its 
performance. In the field of medical image analysis, it is cru-
cial to establish that the prediction of the proposed model is 
based on proper detection of the relevant portion of the given 
image. Grad-CAM provides a visual mechanism to inspect 
which distinct region of the image influenced the decision 
of the model to assign the location information of the EGD 
image. Figure 6 shows several example images and their 
respective generated heatmaps using Grad-CAM.

Table 3  Model performance 
for location (multi-class) 
classification

NPV negative predictive value, PPV positive predictive value

Metrics Mean value Location

A B C D E F G H

Accuracy 97.58 97.68 97.99 98.94 98.28 98.17 96.69 93.6 97.97
Sensitivity 97.42 97.68 97.99 98.94 98.28 98.17 96.69 93.6 97.97
Specificity 99.66 99.69 99.56 99.59 99.73 99.61 99.83 99.62 99.61
PPV 97.5 97.97 97.15 97.66 98.52 96.75 98.65 96.3 96.99
NPV 99.66 99.65 99.69 99.82 99.68 99.78 99.57 99.32 99.74
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Processing time analysis

The time requirements of a model vary based on the num-
ber of its trainable parameters. To test a single image, the 
mean prediction time, including the preprocessing time, was 
0.26 s.

Discussion

Our model successfully classified the EGD images into eight 
regions of the UGI tract with 97.58% accuracy and evalu-
ated the completeness of EGD studies with 89.20% accu-
racy. Using these two phases, we were able to construct a 
model that could be used for quality control of EGD photo 
documentation.

There are a few studies that used AI to recognize the 
anatomical location of EGD images. Takiyama et al. used 
27,335 EGD images and classified them into four classes 
(larynx, esophagus, stomach, and duodenum) and subclas-
sified the images of the stomach into three classes (upper, 
middle, and lower) [25]. This study highlighted the potential 
of using AI in EGD images but had limited clinical applica-
tion because they categorized EGD images to four organs: 
larynx, esophagus, stomach and duodenum. WISENSE, an 
AI system introduced by Wu et al. made a significant pro-
gress in the application of AI into EGD, not only in the area 
of images but also in real-time [26, 27]. The study utilized 
the VGG-16 network to classify 26 locations of EGD and 
applied WISENSE to real-time EGD for monitoring blind-
spots through reinforcement learning with an accuracy of 
90.02%. Compared to previous studies, we tried to build 

Fig. 4  Confusion matrices of classification results for the eight locations (multi-class classification): A raw count and B row-normalized values

Fig. 5  Confusion matrices for validation of inspection completeness (binary classification): A raw count and B row-normalized values



Surgical Endoscopy 

1 3

our model especially useful for evaluating the complete-
ness of visualization of EGD procedures in large number, 
considering its application in the EGD quality control pro-
gram. Currently, EGD quality control, especially related to 
photo documentation, can only be performed by experts in 
the endoscopy, but reviewing all EGD procedures takes a 
lot of time, energy, and resources, making it nearly impos-
sible. Instead, we constructed our model to aid the experts 
in hopes of taking over the task in the near future. To build 
a model for this purpose, our study applied widely accepted 
guidelines for EGD photo documentation with eight loca-
tions, which is suitable for the purpose of classification 
and determination of EGD completeness in already stored 

images. Our study was also designed in two steps, multi-
class classification for evaluation in image level and binary 
classification for evaluation in patient/procedure level not 
only to match the images with anatomical locations but also 
to determine the completeness of the procedure. Our study 
showed 97.58% accuracy in image classification, which was 
similar or higher than 97% and 90.02% accuracies of previ-
ous studies, and 89.20% of accuracy in evaluation of the 
completeness of EGD procedures. Our results support the 
possibility of substituting artificial intelligence for repetitive 
tasks in the field of experts through our success in this field.

In the domain of medical image analysis, it is crucial 
to find the reason a model fails for particular images. The 

Fig. 6  Heatmaps of endoscopic images. Images A, B are of mid-
esophagus at the same location with different air-insufflation levels, C 
is of the gastroesophageal junction, and D is of the duodenal bulb. A, 

C are examples of correctly classified images while B, D are incor-
rectly classified images. An area displayed in red is more activated 
than an area in blue in a particular region
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probability heatmap helps us not only understand how the 
model works but also learn why the model failed so that 
we can improve it. Figure 6A and B were taken at the same 
location, mid-esophagus, with a different air-insufflation 
level. Figure 6A was correctly classified as location A, while 
Fig. 6B was incorrectly classified as location B. The origi-
nal images of Fig. 6B and C look similar, and our model 
predicted both images to be in location B, but they were 
captured at A and B, respectively. These examples indicate 
that in order for the model to classify the image correctly, the 
image quality and confounding factors need to be controlled.

Besides algorithmic error, there are several features of 
collected images that render them incorrectly classified, 
including the aforementioned image quality and confound-
ing factors. However, some of these features could not be 
avoided because of the retrospective design of the study. 
The same location or lesion can be seen or documented dif-
ferently depending on many factors such as the level of air 
inflation, distance from the wall, luminosity, and rotation 
angle. In addition, images may contain several character-
istics that hinder proper classification, such as mucous, 
inflammation, gastric juice, bubbles, blood, abnormal lesion, 
external compression, and out-of-focus. Moreover, there is a 
clear distinction between organs, but there is no clear cut-off 
margin within the organ. Thus, a disagreement among the 
clinicians regarding the location is possible. Additionally, 
images occasionally cover more than one location, which 
makes it difficult to classify the locations. We did not con-
trol these factors because they are common in endoscopic 
images; thus, the model should be able to compensate for 
them in order to be effective and widely used in the clinical 
setting.

Based on the confusion matrix (Fig. 4), the most con-
fusing area in our study was between locations A and B, 
corresponding to the esophagus and GEJ, respectively. The 
esophagus is a long narrow cylindrical organ that is col-
lapsed at rest and has a peristaltic contraction. These two 
conditions can make the esophagus similar in appearance 
to GEJ, as shown in Fig. 6B and C. Furthermore, if GEJ 
is loose or open during the contraction, these conditions 
could lead GEJ to be incorrectly classified or labeled as a 
more proximal esophagus. GEJ can be recognized visually 
from the rest of the esophagus by squamocolumnar junc-
tion called the Z-line. However, occasionally the Z-line can-
not be seen clearly even if the images were taken at GEJ, 
and it requires a lot of effort by endoscopists to identify the 
GEJ correctly. To improve the accuracy in differentiating 
the esophagus from GEJ, we propose adding a location or 
sequence information to the photo, but this proposal requires 
further research.

There are several approaches to improve the overall 
accuracy of our study. For our model to be able to cope 
with different clinical settings and overcome the error 

factors mentioned above, additional image data are nec-
essary. In addition, minimization of a data loss during 
preprocessing, modification of our network algorithm, 
and optimization of the hyperparameter may be able to 
improve the outcome of the model. In addition, using our 
model in a real-time setting, although not currently appli-
cable, could provide the location information and solve 
the problems resulting from the limited number of images.

The average number of images endoscopists take per 
EGD procedure is unknown, but classification using our 
model takes about 2.1 s for eight images, 5.2 s for 20 
images, and 7.8 s for 30 images, including preprocessing 
time. If we estimate the number of images for a single 
EGD procedure to be 20, it would take less than 9 min for 
the model to classify images from one hundred patients 
and to differentiate complete EGD tests from incomplete 
ones. About 6 million EGD procedures are performed 
annually in the United States, so, using a single computer, 
it would take our model about 361 days and 2 h to classify 
and determine the completeness of all EGD procedures 
performed in the United States in a year [28].

Our study has a few limitations. The study was performed 
in a single tertiary center using endoscopes from a single 
supplier, so our model needs further validation in different 
settings with larger image datasets. We did not use endo-
scopic images of patients with the mucosal lesion, such as 
gastric ulcer or cancer, or with surgically altered anatomy. 
Our model needs to be validated with a larger dataset before 
it can be used in clinical settings. Moreover, the model flex-
ibility is quite low, so if quality control was to be applied to 
different photo documentation methods, the model would 
have to be re-trained with re-annotated data. The number of 
experts reviewing the images was relatively small.

Conclusion

In summary, we developed a ready-to-use program for 
EGD quality control in terms of completeness of EGD. 
Our model successfully classified the EGD images into 
its anatomical locations and evaluated the completeness 
of EGD procedures. With its validation at multi-institu-
tional level, we expect our program to be able to relieve 
the burden of the endoscopists. Our classification results 
could also be the basis for further AI research in detecting 
abnormal lesions in the UGI tract and ultimately develop-
ing robotic EGD and capsule EGD.
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