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Assessment of rapidly advancing bone age during puberty on elbow
radiographs using a deep neural network model
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Abstract
Objectives Bone age is considered an indicator for the diagnosis of precocious or delayed puberty and a predictor of adult height.
We aimed to evaluate the performance of a deep neural network model in assessing rapidly advancing bone age during puberty
using elbow radiographs.
Methods In all, 4437 anteroposterior and lateral pairs of elbow radiographs were obtained from pubertal individuals from two
institutions to implement and validate a deep neural network model. The reference standard bone age was established by five
trained researchers using the Sauvegrain method, a scoring system based on the shapes of the lateral condyle, trochlea, olecranon
apophysis, and proximal radial epiphysis. A test set (n = 141) was obtained from an external institution. The differences between
the assessment of the model and that of reviewers were compared.
Results Themean absolute difference (MAD) in bone age estimation between themodel and reviewers was 0.15 years on internal
validation. In the test set, the MAD between the model and the five experts ranged from 0.19 to 0.30 years. Compared with the
reference standard, the MAD was 0.22 years. Interobserver agreement was excellent among reviewers (ICC: 0.99) and between
the model and the reviewers (ICC: 0.98). In the subpart analysis, the olecranon apophysis exhibited the highest accuracy (74.5%),
followed by the trochlea (73.7%), lateral condyle (73.7%), and radial epiphysis (63.1%).
Conclusions Assessment of rapidly advancing bone age during puberty on elbow radiographs using our deep neural network
model was similar to that of experts.
Key Points
• Bone age during puberty is particularly important for patients with scoliosis or limb-length discrepancy to determine the phase
of the disease, which influences the timing and method of surgery.

• The commonly used hand radiographs–based methods have limitations in assessing bone age during puberty due to the less
prominent morphological changes of the hand and wrist bones in this period.

• A deep neural network model trained with elbow radiographs exhibited similar performance to human experts on estimating
rapidly advancing bone age during puberty.
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Abbreviations
AP Anteroposterior
DICOM Digital Imaging and Communications in Medicine
GP Greulich–Pyle
ICC Intraclass coefficient
LDL Label distribution learning
MAD Mean absolute difference
PHV Peak height velocity
RMSE Root mean square error
ROI Region of interest
SD Standard deviation

Introduction

Bone age has been widely used to diagnose and treat patients
with precocious or delayed puberty and is a predictor of adult
height [1]. In the pubertal period, bone age advances rapidly
during the growth spurt. During puberty, it is particularly im-
portant to determine bone age in patients with scoliosis or limb-
length discrepancy, since it is associated with the phase of the
disease (i.e., acceleration or deceleration), which influences the
timing and method of surgery. The Greulich–Pyle (GP) and
Tanner–Whitehouse methods applied to hand radiographs are
the most commonly used in this field; however, they are limited
in assessment of bone age during puberty due to less prominent
morphological changes in hand and wrist bones during this
period. Little et al. reported that the use of a GP atlas would
not improve the accuracy of the prediction of limb-length dis-
crepancy [2]. Furthermore, the GP atlas is not regularly divided
into 6-month intervals and exhibits a relatively large interob-
server error during the pubertal growth spurt [3].

Sauvegrain et al. introduced a method to determine bone
age using elbow anteroposterior (AP) and lateral radiographs
based on the shapes of the lateral condyle, trochlea, olecranon
apophysis, and proximal radial epiphysis [4]. The Sauvegrain
method is used on elbow bones, which undergo prominent
changes during puberty; it has excellent interobserver correla-
tion and reproducibility in assessing bone age during puberty
and is useful in estimating peak height velocity (PHV), an
important factor for predicting disease progression and deter-
mining surgery timing for scoliosis or limb-length discrepan-
cy [3]. Additionally, the Sauvegrain method can be used to
assess skeletal maturity in regular 6-month intervals during
the PHV phase [5].

Several artificial intelligence systems for bone age assess-
ment have been reported. Most of these systems have been
developed based on hand and wrist radiographs [6–10].
Although these systems can improve efficiency in clinical
routines by reducing reading time and supporting decision
making, they are limited in the accurate assessment of bone
age during puberty due to less prominent morphological

changes in hand and wrist bones during this period compared
to those of the elbow, as well as the lack of correlation be-
tween artificial intelligence systems and PHV. To our knowl-
edge, this is the first study to estimate bone age based on
elbow radiographs using a deep neural network model.

We aimed to evaluate the performance of our deep neural
network model in assessing rapidly advancing bone age dur-
ing puberty on elbow radiographs.

Materials and methods

Training/validation set

The institutional review board of two tertiary hospitals ap-
proved this study. Elbow AP and lateral pairs of radiographs
of pubertal individuals (9–16 years for boys and 8–14 years
for girls) from March 2004 to September 2018 were obtained
from the two institutions. Exclusion criteria included clinical
history of delayed or precocious puberty; radiographic evi-
dence of fracture; tumor, deformity, or surgery around the
elbow; and poor image quality, including inappropriately po-
sitioned elbows and images containing splints. Experienced
radiologists judged the appropriateness of the image quality.
In all, 4437 AP and lateral pairs of elbow radiographs were
used for training and internal validation. The images were
anonymized and in Digital Imaging and Communications in
Medicine (DICOM) format.

The reference standard bone age was established by con-
sensus interpretation of five trained researchers (two physical
therapists with doctoral degrees and three nurses withmaster’s
degrees) under the supervision of an experienced pediatric
orthopedic surgeon using the Sauvegrain method, which is a
scoring system based on the shapes of the lateral condyle (1–9
points), trochlea (1–5 points), olecranon apophysis (1–7
points), and proximal radial epiphysis (1–6 points) [8]. The
scoring system was the same irrespective of sex; however, the
conversion ratio of the score to bone age differed by sex. All
labelers were blinded to the sex and chronological age of the
subjects. A score of 0 was applied for each portion of the bone
in which the secondary ossification center was not visible,
slightly broadening the age range. During labeling, different
colored lines were drawn along the boundary of the secondary
ossification centers of the four portions of the elbow to help
improve identification of each bone portion using the algo-
rithm. Online point and click templates that support the paint
brush tool and automatic total score calculation were intro-
duced for efficient labeling (Fig. 1).

Test set

An anonymized test set in the DICOM format was obtained
from an outside tertiary hospital. A total of 141 pairs of AP
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and lateral elbow radiographs were obtained after applying the
same exclusion criteria as in the training set. Five reviewers (a
musculoskeletal radiologist with 16 years of experience, an
orthopedic surgeon with 12 years of experience, a pediatric
radiologist with 7 years of experience, a fourth-year orthope-
dic resident, and an orthopedic researcher with 10 years of
experience) independently graded bone age on elbow radio-
graphs using the Sauvegrain method. For the final compari-
son, the reference standard was re-established based on the
majority decision of the five reviewers. If more than three
reviewers assigned the same score, the image was consolidat-
ed as a reference standard. In cases with no agreed-upon score,
a consensus interpretation was obtained from the three
reviewers.

Model implementation

Based on the Sauvegrain method, the proposed bone age as-
sessment framework applied to AP and lateral elbow

radiograph images uses region of interest (ROI) extractors to
initially extract four bone patches and local classifier models
to estimate their corresponding scores. Subsequently, the sum
of these scores is converted to bone age.

ROI extractor The configuration of the ROI extractor was
inspired by the pose estimation network HRNet-32 by
Escobar [11] that uses hand detection and hand pose esti-
mation of various hand positions to assess bone age. The
model is trained to localize key points indicating the cen-
ters of the ROI patches from the elbow images using patch
annotations, as illustrated in Fig. 1. The bounding box
containing the segmentation area was used as the patch
ROI annotation. Each output of the ROI extractor is a spa-
tial map, with model confidence describing the likelihood
of a key point being located at each pixel. After training,
ROIs were automatically extracted using a fixed window
centered at the maximum probability key points obtained
from each heatmap.

Fig. 1 Online point and click template for efficient labeling. After
authorized log-in, the labeler examined the anteroposterior and lateral
pairs of the radiographs and clicked on the appropriate score for each
portion of the bone at the lower side of the screen. By clicking the
score, the paint brush tool of the corresponding color (red, lateral

epicondyle; green, trochlea; yellow, olecranon apophysis; and blue,
radial epiphysis) was activated, and the boundary of the location was
marked roughly by the labeler. After assigning scores for the four parts,
the total score was automatically calculated and displayed on the right
lower side of the screen
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Local classifier The local classifiers showed a convolutional
neural network architecture and were trained to estimate the
maturity stage, which can be mapped using a rule-based bi-
jective function to compute the scores. Each bone is related to
an ordered set of maturity stages, and the output of each local
classifier is a distribution over the possible maturity scores.
The models were obtained by minimizing the loss with a tar-
get one-hot vector (or dirac-delta distribution), indicating the
maturity stage of each bone. In our experiments, we used the
state-of-the-art classification network EfficientNet-B4 [12] for
each local classifier by modifying the number of output nodes
to a set number. The estimated maturity stage was then
mapped to its corresponding score, and the sum of the scores
was converted to the predicted bone age.

Implementation details All models were implemented using
an open-source machine library (PyTorch version 1.2.0) [13].
All elbow images for the ROI extractor were extracted from
DICOM files, resized to 512 × 512 with padding, and the
aspect ratio was maintained. Input ROI patches for local clas-
sifiers were cropped to 512 × 512 size from the raw elbow
image to maintain high-resolution information. To normalize
variable pixel intensity scales within the X-ray radiographs,
we performed per image standardization so that each image
had a mean of 0 and a variance of 1. During training, each
training example was rotated randomly between –15° and 15°,
shifted randomly to –32 and 32 pixels, and flipped horizon-
tally, with 50% probability for both ROI extractor and local
classifier. The model parameters were optimized using the
RAdam optimizer [14], with the hyperparameter weight decay
set to 0.0001, beta1 set to 0.9, and beta2 set to 0.9.

The ROI extractor was trained using a pixel-wise binary
classification loss, which was computed by comparing the
predicted probability of the corresponding pixel as the key
point and the true label of the key point. For the local clas-
sifier, we used joint learning of label distribution and ex-
pectation regression, which showed state-of-the-art perfor-
mance in facial age estimation [15]. Label distribution
learning (LDL) is used to utilize the correlation among ad-
jacent labels, as in the case of age or maturity estimation
[16, 17], and the expectation regression is used to directly
minimize the discrepancy between the estimated score and
the label. The Kullback–Leibler divergence loss and regres-
sion loss were used for two learning objectives with equal
weights.

In general, it is difficult to optimize a convolutional neural
network model from scratch using a small amount of data. For
this reason, we initialized the weights of the encoder layers of
HRNet-32 and EfficientNet using COCO pose estimation and
ImageNet pretrained weights, respectively.

Each ROI extractor was trained for 200 epochs with a
learning rate of 0.001 over. The learning rate was scheduled
using the cosine annealing scheduler implemented in PyTorch

with a hyperparameter Tmax set to total epochs. Local classi-
fiers can also be learned in the same scheduler; however, the
best results are obtained at 100 epochs and a learning rate of
0.0003. The best model was selected using the validation set
with the best performance. A diagram of model implementa-
tion is shown in Fig. 2.

Statistical analysis

The difference between model estimation and expert results was
reviewed with Bland–Altman plots and compared using the
mean absolute difference (MAD) or root mean square error
(RMSE). The results were separately analyzed with the scores
of each elbow part and used to calculate the final bone age.
Subsequently, the accuracy of each portion of the elbow was
derived. Interobserver agreement among human experts and be-
tween the model and human reviewers was evaluated using the
intraclass coefficient (ICC). Interobserver agreement was cate-
gorized as follows: 0–0.20, poor; 0.21–0.40, fair; 0.41–0.60,
moderate; 0.61–0.80, substantial; and 0.81–1.00, excellent.

Results

Demographic data of the subjects

The subjects comprised 3162 boys and 1275 girls. Labeled
bone age was 12.54 ± 2.76 years in the training/validation
set and 12.07 ± 1.48 years in the test set. The distribution of
the data is shown in Fig. 3.

Internal validation results

Internal validation was performed using fivefold cross-
validation (80% training and 20% validation). On internal
validation, the MAD of bone age between model estimation
and reviewers was 0.15 years, with a score of 0.44. Examining
the scores of each portion of the elbow, accuracy was best at
the olecranon (90.73%), followed by the lateral condyle
(87.62%), trochlea (86.45%), and radial epiphysis (81.21%),
with a MAD of 0.108, 0.153, 0.144, and 0.167, respectively.
The radial epiphysis was assessed on lateral views since it is
associated with a more accurate assessment than the AP view
(78.88% and 77.88%, respectively) in preliminary internal
validation.

Test set results

The MAD of bone age between the model and the five human
experts ranged from 0.19 to 0.30 years. The MAD of the total
score ranged from 0.79 to 1.11, and RMSE ranged from 1.33
to 1.73. The MAD among reviewers ranged from 0.19 to 0.28
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years, with excellent interobserver agreement (ICC: 0.993, p =
0.000). The MADs of the reviewers and the model are pre-
sented in Table 1. For the lateral epicondyle, trochlea, olecra-
non apophysis, and radial epiphysis, agreement was also high
among reviewers (ICC = 0.988, 0.985, 0.993, and 0.967, re-
spectively; all p < 0.001).

In the comparison between the model and reference stan-
dard derived by the majority decision, MAD was 0.22 in
years, with a score of 0.81. Agreement between the model
and the reviewers was also high (ICC: 0.98, p < 0.001). The
performance of the model is listed in Table 2. The Bland–
Altman plot of model estimation on the reference standard
bone age is presented in Fig. 4.

Subpart analysis was performed to investigate the accuracy
of the model for each portion of the elbow. Considering the
score with the highest output probability as the only correct
answer (top 1 accuracy), the olecranon apophysis exhibited

the highest accuracy (74.5%), followed by the trochlea
(73.7%), lateral condyle (73.7%), and proximal radial epiph-
ysis (63.1%); also, the percentage accuracy increased to
90.7%, 90.7%, 86.5%, and 78.7%, respectively, after includ-
ing the first and second choices as correct answers (top 2
accuracy). The top 1 to top 3 accuracies are presented in
Table 3.

To ensure that the models had learning pertinent features,
we generated a class activation map using gradCAM [15]. By
aggregating intermediate feature maps using the gradient from
the final layer of the network as the weighting factor, the
heatmap had higher values in the portion of the bone associ-
ated with high impact on the model prediction. The heatmap
was then converted to a color image using a color scheme,
upsampled to 512 × 512 pixels, and overlaid on the input
image. A sample heatmap of the subparts from the test set
generated by gradCAM is shown in Fig. 5.

Fig. 3 Distributions of bone ages
of the training/validation (n =
4437) and test (n = 141) sets

Fig. 2 Diagrammatic illustration of pre-processing and maturity score prediction model
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Outlying case review

Ten of 141 cases were outliers, with a 1.96 standard deviation
(SD) in the test set (4 girls and 6 boys). Five cases involved
underestimation (four girls and one boy), and five cases in-
volved overestimation (five boys). Regarding the total scores,
the differences were 5 points in 3 cases, 3 points in 3 cases, 2
points in 3 cases, and 1 point in 1 case. For age in years,
differences ranged from 0.84 to 1.14 years (mean ± SD, 0.88
± 0.18). In the subpart review, > 2 points difference at the
lateral epicondyle was observed in 2 cases (2 points), at the
trochlea in 1 case (4 points), at the olecranon in 2 cases (2 and
3 points, respectively), and at the radial epiphysis in 1 case (2
points). There was no misinterpretation case, with a score of 0
to the full score, or vice versa.

Discussion

We developed a deep-learning model for estimating bone age
on elbow radiographs using the Sauvegrain method and ob-
tained results comparable to those of experts. The consensus
MAD of reviewers was 0.22 in years, and the agreement be-
tween model and reviewers was high (ICC: 0.98, p < 0.001).

Bone age determination using elbow radiography is more
precise during puberty due to prominent morphological
changes in elbow bones compared to hand bones. The

Sauvegrain method uses scores of five ossification centers of
the elbow based on the provided visual score template, irre-
spective of sex. Then, the score is converted to bone age based
on the conversion ratio, which is dependent on sex [4]. The
results provide data on bone age, with excellent reproducibil-
ity and a regular 6-month scale. Therefore, the Sauvegrain
method is reliable, simple, and reproducible [3, 5]. Another
advantage of this method is its reliable correlation with the
timing of the PHV. For orthopedic surgical treatment, evalu-
ation of PHV and exact bone age assessment at 6-month in-
tervals in adolescence are important [18, 19]. In patients with
idiopathic scoliosis, the timing of PHV is useful, since it is
indicative of the likelihood of disease progression to a phase in
which spinal arthrodesis is required [20]. In patients with low-
er limb length discrepancy, since there is a short time period of
remaining growth after onset of puberty (approximately 2.5
years), accurate evaluation of bone age with elbow and hand
radiographs is necessary to determine the timing of
epiphysiodesis [18].

Considering the complex and time-consuming nature of
bone age assessment, automation of the process has been
attempted in the past [21, 22]. Many convolutional neural
network algorithms have been developed with the advent of
deep-learning technology to assess bone age using hand ra-
diographs [6–10]. Many attempts have been made to improve
the accuracy of the model. Recent results demonstrated a
MAD of 0.33 years when combining the models; however,

Table 2 Comparison of the differences between the model and reviewers

Years Score

MAD RMSE Total Lateral condyle Trochlea Olecranon apophysis Radial epiphysis

Reviewer 1 0.1691 0.3189 0.6277 0.2553 0.1135 0.1277 0.2163

Reviewer 2 0.1467 0.2785 0.5355 0.1348 0.1809 0.1844 0.1773

Reviewer 3 0.1683 0.3154 0.6135 0.2979 0.2021 0.1631 0.1206

Reviewer 4 0.1614 0.3024 0.6135 0.2199 0.2270 0.1489 0.1418

Reviewer 5 0.1594 0.3061 0.5461 0.0851 0.3050 0.0887 0.2872

Model 0.2253 0.3576 0.812 0.3120 0.3049 0.3049 0.3297

Note: Numbers are years or Sauvegrain scores. MAD, mean absolute difference; RMSE, root mean square error

Table 1 The mean absolute
differences among the five
reviewers and the model

Reviewer 1 Reviewer 2 Reviewer 3 Reviewer 4 Reviewer 5 Model

Reviewer 1 0.2480 0.2392 0.2214 0.2800 0.3020

Reviewer 2 0.2061 0.2039 0.1894 0.2292

Reviewer 3 0.2033 0.2356 0.2467

Reviewer 4 0.2670 0.2736

Reviewer 5 0.1942

Note: Numbers are years
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results obtained during the pubertal period were not specified
[23, 24]. To our knowledge, there is no automated bone age
assessment model using elbow radiographs that target the pu-
bertal period [10]. Our model using elbow radiographs
showed a MAD of 0.22 years and RMSE of 0.36 years.
Although the Sauvegrain method supports a narrow age range
in the pubertal period, its accuracy appears to be high. This
indicates that our model is helpful in identifying the appropri-
ate time for spinal arthrodesis or lower limb epiphysiodesis in
adolescents. Although the overall performance was similar to
that of human experts, there were several cases with incorrect
estimations greater than 1 SD. We attributed misinterpreta-
tions of undetected apophysis/epiphysis (score 0) as full score
ossification or vice versa, since inexperienced reviewers may
sometimes confuse these two portions of the bone. However,
reviewers can rectify this error by referring to the status of
other ossification centers of the elbow. In our outlying case
review, the difference between point 0 and the full score was
clear. Only gradual 1- to 4-point differences were found in the
subparts of the bone. The model may detect the status of other
ossification centers based on some of the heatmaps tagged on
other ossification centers included in the cropped ROI (Fig. 5).
In our subpart accuracy analysis, the olecranon exhibited the
highest top 1 and top 2 accuracy values. This may contribute
to the evidence supporting the olecranon method, a simplified
version of the Sauvegrain method, using only the olecranon
during the accelerating phase of PHV [25]. Although the ra-
dial epiphysis could be evaluated on both AP and lateral
views, we assessed the score based on the lateral view due
to its high accuracy in internal validation.

Our study has several limitations. First, the 4437 pairs of
radiographs used in the training set may be small compared to
the amount used in other radiograph-based models, regardless
of the narrow age range selected. We modified the method of
Demeglio et al [3] by adding a 0 point in four anatomic loca-
tions to maximize the data size. However, we only used cases
with a total score greater than 8 points based on the
Sauvegrain method, which allows for expansion of the age
range. In addition, we included available right elbow radio-
graphs, despite the fact that the left elbow is recommended
when using the Sauvegrain method. Based on image analysis,
we assumed that side differences could be resolved by apply-
ing various image augmentations, including horizontal flip-
ping. Additionally, there was an imbalance in data distribu-
tion, and specific scores of the subparts were relatively limit-
ed, possibly influencing the accuracy of the model. However,
it is uncertain whether this resulted from insufficient data or
the natural distribution of advancing bone age. Based on the
Bland–Altman plot (Fig. 3), outlying cases over 1 SD mostly
presented in the period between 10 and 11 years of age, during
which the data were relatively sufficient. Finally, two test set
reviewers indirectly and directly participated in training set
labeling, potentially influencing the test results.

In conclusion, the results obtained using a deep neural net-
workmodel trainedwith elbow radiographs were similar to those
of experts in estimating rapidly advancing bone age during pu-
berty. Automated determination of bone age of the elbowmay be
useful in estimating bone age during puberty based on hand
bones and could potentially be useful to determine the timing
of surgery in scoliosis or limb-length discrepancy.

Table 3 Accuracy of the model
based on the portion of the elbow Lateral condyle Trochlea Olecranon apophysis Radial epiphysis

Top 1 accuracy 73.7 73.7 74.5 63.1

Top 2 accuracy 86.5 90.7 90.7 78.7

Top 3 accuracy 92.9 95.7 95.0 91.4

Note: Numbers are percentages (%). Top N accuracy refers to the frequency at which the reference standard grade
is among the highest N prediction probabilities for each location

Fig. 4 Bland–Altman plot showing the difference between model and reference standards derived from reviewers (M, male; F, female)
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