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Highlights
� MAIT cells activated by IL-15 exert TCR/MR1-independent,

innate-like cytotoxicity.

� Innate-like cytotoxicity of MAIT cells is dependent on
NKG2D, granzyme B, and CD2.

� PI3K–mTOR signaling is required for innate-like cytotoxicity
of MAIT cells.

� MAIT cells exhibit activated and cytotoxic phenotypes during
acute hepatitis A.

� MAIT cells may contribute to liver injury during acute hep-
atitis A.
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Lay summary
Immune-mediated liver injury commonly
occurs during viral infections of the liver.
Mucosal-associated invariant T (MAIT) cells
are the most abundant innate-like T cells in
the human liver. Herein, we have identified
a mechanism by which MAIT cells circum-
vent conventional T cell receptor inter-
actions to exert cytotoxicity. We show that
this innate-like cytotoxicity is increased
during acute hepatitis A virus infection and
correlates with the degree of hepatocyte
injury.
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Background & Aims: Mucosal-associated invariant T (MAIT) Conclusions: Taken together, the results demonstrate that liver

cells, the most abundant innate-like T cells in the human liver, can
be activated by cytokines during viral infection without TCR
stimulation. Here, we examined the mechanisms underlying TCR/
MR1-independent innate-like cytotoxicity of cytokine-activated
liver MAIT cells. We also examined the phenotype and function
of MAIT cells from patients with acute viral hepatitis.
Methods: We obtained liver sinusoidal mononuclear cells from
donor liver perfusate during liver transplantation and examined
the effect of various cytokines on liver MAIT cells using flow
cytometry and in vitro cytotoxicity assays. We also obtained
peripheral blood and liver-infiltrating T cells from patients with
acute hepatitis A (AHA) and examined the phenotype and
function of MAIT cells using flow cytometry.
Results: IL-15-stimulated MAIT cells exerted granzyme B-
dependent innate-like cytotoxicity in the absence of TCR/MR1
interaction. PI3K–mTOR signaling, NKG2D ligation, and CD2-
mediated conjugate formation were critically required for this
IL-15-induced innate-like cytotoxicity. MAIT cells from patients
with AHA exhibited activated and cytotoxic phenotypes with
higher NKG2D expression. The innate-like cytotoxicity of MAIT
cells was significantly increased in patients with AHA and
correlated with serum alanine aminotransferase levels.
words: Mucosal-associated invariant T cells; IL-15; Cytotoxicity; Hepatitis; Virus.
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MAIT cells activated by IL-15 exert NKG2D-dependent innate-like
cytotoxicity in the absence of TCR/MR1 engagement. Further-
more, the innate-like cytotoxicity of MAIT cells is associated with
liver injury in patients with AHA, suggesting that MAIT cells
contribute to immune-mediated liver injury.
Lay summary: Immune-mediated liver injury commonly occurs
during viral infections of the liver. Mucosal-associated invariant
T (MAIT) cells are the most abundant innate-like T cells in the
human liver. Herein, we have identified a mechanism by which
MAIT cells circumvent conventional T cell receptor interactions
to exert cytotoxicity. We show that this innate-like cytotoxicity is
increased during acute hepatitis A virus infection and correlates
with the degree of hepatocyte injury.
© 2020 European Association for the Study of the Liver. Published by
Elsevier B.V. All rights reserved.
Introduction
The liver is a target organ for several viruses, including hepatitis
viruses A to E.1,2 The liver acts as a frontline barrier against
diverse gut-derived bacteria, including both commensal and
pathogenic bacteria.3,4 The liver is also a unique organ in terms of
immune cell composition. In particular, innate-like T cells are
enriched in the liver microenvironment compared to peripheral
blood (PB) and other organs.5,6 Innate-like T cells carrying less
variant T cell receptor (TCR) can exert innate-like effector func-
tions with specificity for commonly shared antigens among
multiple pathogens, whereas conventional T cells carrying
variant abTCR exert antigen-specific adaptive responses.7,8

Innate-like T cells that contribute to rapid immune responses
include natural killer T (NKT) cells, cd T cells, and mucosal-
associated invariant T (MAIT) cells.8

MAIT cells are characterized by a semi-invariant TCR
composed of Va7.2-Ja33/12/20 and a restricted set of b chains in
humans.9,10 MAIT cells are present in the PB, mucosal tissues, and
the liver, and are particularly localized in the liver sinusoidal
space, comprising 10–40% of intrahepatic T cells.11–13 The TCRs of
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MAIT cells recognize microbial-derived riboflavin (vitamin B2)
biosynthesis intermediates, such as 5-(2-oxopropylideneamino)-
6-D-ribitylaminouracil (5-OP-RU), presented by the highly
conserved major histocompatibility complex (MHC) class
I-related molecule 1 (MR1).14,15 Consequently, MAIT cells are
typically activated during bacterial or fungal infections16 and
produce pro-inflammatory cytokines, including interferon
(IFN)-c, tumor necrosis factor (TNF), and interleukin (IL)-17.11 In
addition, MAIT cells can exert cytolytic activity against cells
presenting a bacterial ligand on MR1.17,18

MAIT cells can also be activated in the absence of TCR/MR1
signaling.19–22 For example, MAIT cells can be activated by IL-12
and IL-18, which are produced by monocytes stimulated by
diverse pathogen-associated molecular patterns, to produce IFN-c
and TNF.22,23 IL-12 and IL-18 also play a role in the TCR-
independent activation of MAIT cells during infection by viruses,
including hepatitis C virus,19 dengue virus,24 and influenza virus.21

Although previous studies on cytokine-induced activation ofMAIT
cells have focused primarily on the role of IL-12 and IL-18, other
cytokines can activateMAIT cells. For example, IL-15 induces IFN-c
production by MAIT cells when combined with IL-12 or IL-18.19

Though the TCR/MR1-independent, cytokine-induced activation
of MAIT cells has been widely studied, whether MAIT cells exert
cytokine-induced cytolytic activity in the absence of TCR/MR1
interaction remains unknown. Which cytokines stimulate the
cytolytic activity of MAIT cells also remains to be elucidated.

Recently, a critical role of TCR-independent activation of CD8+

ab T cells with other antigen specificities was reported in
immune-mediated liver injury during acute viral hepatitis. IL-15,
which is produced in the virus-infected liver, activates memory
CD8+ ab T cells without cognate antigen stimulation during acute
hepatitis A (AHA).25 CD8+ T cells activated by IL-15 exert TCR-
independent innate-like cytotoxicity, resulting in liver injury
during AHA.25 However, the phenotype and function of MAIT
cells that are enriched in the liver during AHA were not inves-
tigated in the previous study, particularly the TCR-independent
innate-like cytotoxicity of MAIT cells.

In the present study, we aimed to examine whether liver
MAIT cells stimulated by cytokines can exert TCR/MR1-
independent innate-like cytotoxicity, while also assessing the
mechanisms that underlie this process. We also examined the
phenotype and function of MAIT cells in patients with AHA,
looking at their possible contribution to liver injury.

Materials and methods
Study samples and lymphocyte isolation
Paired PB and liver perfusates were obtained from 106 healthy
living liver transplant donors who were negative for HBV DNA,
HCV RNA, anti-HIV antibody, and HIV p24 antigen. Graft livers
were perfused with Custodiol® HTK (Essential Pharmaceuticals)
solution during the bench procedure. Of the 1,000 ml of total
perfusate, the first 500 ml was discarded and the second 500 ml
collected and filtered. PB mononuclear cells (PBMCs) and liver
sinusoidal mononuclear cells (LSMCs) were isolated by density
gradient centrifugation using Lymphocyte separation medium
(Corning). In addition, PB samples were obtained from14 patients
with AHA and 8 patients with chronic hepatitis B (CHB). Charac-
teristics of the patients are presented in Table S1–3. To analyze
liver tissue-infiltrating lymphocytes, background non-tumor liver
tissues were obtained from 6 patients with colon cancer liver
metastasis during tumor resection. Liver tissues were also
Journal of Hepatology 2
obtained from 4 patients with AHA. For flow cytometric analyses
of tissue-infiltrating lymphocytes, single-cell suspensions were
prepared using a Tumor Dissociation Kit (Miltenyi Biotec) in
combination with a gentleMACSTM dissociator (Miltenyi Biotec).
After isolation, cells were either cryopreserved in FBS (RMBIO)
with 10% DMSO (Sigma-Aldrich) or immediately used for experi-
ments. This studywas reviewed and approved by the institutional
review board of Severance Hospital (Seoul, Republic of Korea;
2013-1071-001 and 4-2016-0406) and conducted according to the
principles of the Declaration of Helsinki. Informed consent was
obtained from all study participants.

Multicolor flow cytometry
Cryopreserved PBMCs and LSMCs were thawed and stained with
fluorochrome-conjugated antibodies for specific surface markers
for 10 min at room temperature. Dead cells were excluded using
LIVE/DEAD red fluorescent reactive dye or near-infrared fluores-
cent reactive dye (Invitrogen). For tetramer staining, the cells were
stained with tetramers for 20 min at room temperature, washed
twice, and then stained using the protocols as described above. To
stain intracellular markers, cells were fixed and permeabilized
using a FoxP3 staining buffer kit (eBioscience) and then stained
with intracellular markers for 30 min at 4�C. Multicolor flow
cytometry was performed using an LSR II instrument (BD Bio-
sciences) and data analyzed using FlowJo software (FlowJo, LLC).
Fluorochrome-conjugated monoclonal antibodies used in this
study are listed in the CTAT table. Biotinylated human MR1 5-OP-
RU tetramers were provided by the NIH Tetramer Core Facility and
prepared using streptavidin-PE (Invitrogen).

For further details regarding the materials and methods used,
please refer to the supplementary information and CTAT table.

Results
Liver MAIT cells exhibit activation and NK-like phenotypes
To investigate the characteristics of liver MAIT cells, we analyzed
paired PBMCs and LSMCs from heathy donors (HDs). MAIT cells
were defined as CD3+CD8+CD4-TCRVa7.2+CD161hi cells (Fig. S1A)
and confirmed by MR1 5-OP-RU tetramer staining (Fig. S1B and
C).26 As described previously,12 the frequency of MAIT cells
among CD3+ T cells was higher in liver sinusoids than PB
(Fig. 1A), and the frequency of MAIT cells among PB CD3+ T cells
was positively correlated with that among liver CD3+ T cells
(Fig. 1B). In the TCRVb repertoire analysis, TCRVb usage was
almost identical between the 2 compartments (Fig. 1C). The
expression level of T cell-related transcription factors was also
similar between the 2 populations (Fig. 1D). However, higher
frequencies of liver MAIT cells were CD38+, PD-1+, CD69+, CD56+,
and NKG2D+ compared to PB MAIT cells (Fig. 1E), indicating that
liver MAIT cells are generally more activated and exhibit phe-
notypes that are associated with NK cells and tissue-residency.

IL-15 strongly induces MAIT cells to proliferate and
upregulate cytotoxic molecules
Next, we analyzed the proliferation and effector functions of liver
MAIT cells exposed to various cytokines. IL-2, IL-7, and IL-15, but
not IL-12 and IL-18, significantly induced the proliferation of liver
MAIT cells in CellTrace Violet dilution assays (Fig. 2A and B). This
findingwas corroboratedbyan analysis of Ki-67 expression (Fig. 2C
and D). When cytokine production was investigated, the produc-
tion of IFN-c and TNFby liverMAITcellswas significantly increased
by IL-12 and IL-15, but not by IL-2, IL-7, or IL-18 (Fig. 2E). IL-17A
020 vol. 73 j 640–650 641
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Fig. 1. Phenotypic characterization of liver MAIT cells. Paired PBMCs and LSMCs from HDs were analyzed by flow cytometry. (A) The frequency of
TCRVa7.2+CD161hiCD8+ MAIT cells among PB and liver sinusoidal CD3+ T cells was examined (n = 68). The right panel shows representative dot plots from a single
donor. Bars and error bars represent mean and standard deviation (SD). (B) The frequency of MAIT cells among PB CD3+ T cells was plotted against that among
liver sinusoidal CD3+ T cells (n = 68). Bars graphs represent median and range. (C) The percentage of PB (white) and liver (blue) MAIT cells expressing each Vb
chain was analyzed by flow cytometry (n = 3). (D) The expression level of PLZF, T-bet, Eomes, GATA3, and RORct was analyzed in PB (black) and liver (blue) MAIT
cells (n = 8). Representative flow cytometry plots (upper) and summary data (lower) are presented. (E) The percentages of CD38+ (n = 18), PD-1+ (n = 14), CD69+

(n = 18), CD56+ (n = 18), and NKG2D+ (n = 18) cells were analyzed in PB and liver MAIT cells. Representative flow cytometry plots (upper) and summary data
(lower) are presented. Statistical analysis was performed using the paired t test (A), the parametric Pearson correlation test (B), or Wilcoxon signed-rank test (D
and E). n.s., not significant, ***p <0.001, ****p <0.0001. HDs, heathy donors; LSMCs, liver sinusoidal mononuclear cells; MAIT, mucosal-associated invariant T; MFI,
mean fluorescence intensity; PB, peripheral blood; PBMCs, PB mononuclear cells.
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Fig. 2. Proliferation and effector functions of liver MAIT cells following cytokine stimulation. CellTrace Violet-labeled (A and B) or non-labeled (C–G) LSMCs
from HDs were incubated with IL-2, IL-7, IL-12, IL-15, or IL-18 and analyzed by flow cytometry. Cytokines were used at fixed doses: IL-2 (10 ng/ml), IL-7 (10 ng/
ml), IL-12 (50 ng/ml), IL-15 (10 ng/ml), or IL-18 (50 ng/ml) (A, C, E, F) or at indicated doses (B, D, G). (A and B) Following cytokine stimulation, LSMCs were
incubated for 96 h and analyzed for the percentage of CellTrace Violetlow cells among MAIT cells (A, n = 12; B, n = 6). The left panel shows representative data from
a single donor. (C and D) Following cytokine stimulation, LSMCs were incubated for 96 h and analyzed for the percentage of Ki-67+ cells among MAIT cells (C, n =
13; D, n = 6). The left panel shows representative data from a single donor. (E) Following cytokine stimulation, LSMCs were incubated for 24 h, and intracellular
cytokine staining was performed to examine the percentage of IFN-c+ and TNF+ cells among the MAIT cells (n = 8). The left panel shows representative dot plots
from a single donor. (F and G) Following cytokine stimulation, LSMCs were incubated for 48 h and analyzed for the percentage of perforin+granzyme B+ cells
among MAIT cells (F, n = 19; G, n = 6). The left panel shows representative flow cytometry plots from a single donor. Box plots represent the IQR, with the
horizontal line indicating the median. Whiskers extend to the farthest data point within a maximum of 1.5× IQR. The Friedman test with Dunns’ multiple
comparisons test was used to determine differences between cytokine-stimulated and unstimulated cells (A, C, E, F). **p <0.01, ***p <0.001, ****p <0.0001. Gzm,
granzyme; HDs, heathy donors; IFN, interferon; IL, interleukin; LSMCs, liver sinusoidal mononuclear cells; MAIT, mucosal-associated invariant T; TNF, tumor
necrosis factor.
production was not increased by any cytokine (Fig. S2). We also
examined the expression of cytotoxic molecules in liver MAIT cells
after cytokine stimulation. IL-2, IL-7, IL-12, and IL-15 each signifi-
cantly increased thepercentage ofperforin+granzymeB+MAITcells
(Fig. 2F and G). The effects of cytokines on MAIT cell proliferation
and cytotoxicity were confirmed using magnetically sorted liver
MAIT cells (Fig. S3A–E). IL-15-induced proliferation and upregula-
tionofperforinandgranzymeBwere alsoobserved inPBMAITcells
(Fig. S4A–C). Taken together, these data indicate that IL-15 plays an
important role in activating MAIT cells, resulting in proliferation
and upregulation of cytotoxic molecules.
Journal of Hepatology 2
IL-15-stimulated liver MAIT cells kill target cells in an NKG2D-
dependent manner in the absence of TCR/MR1 interactions
As perforin and granzyme B were upregulated in liver MAIT cells
following cytokine treatment, we next evaluated whether these
cells could mediate TCR/MR1-independent, innate-like killing of
target cells. MAIT cells were magnetically sorted from LSMCs,
stimulated with various cytokines, and co-cultured with K562
cells, which do not express surface MR1 (Fig. S5A).27 The absence
of functioning MR1 on the cell surface of K562 was confirmed by
the fact that MAIT cells were not activated at all by E. coli-treated
K562 cells whereas they were activated by E. coli-treated THP-1
020 vol. 73 j 640–650 643
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cells (Fig. S5B). As shown in Fig. 3A and B, IL-15 predominantly
enhanced K562 killing by MAIT cells compared to other cytokines,
though NK cells exhibited stronger IL-15-induced cytotoxicity
against K562 cells (Fig. S6). Anti-MR1 blocking antibody did not
abrogate the K562 cytotoxicity of IL-15-stimulated liver MAIT
cells, confirming that this cytotoxicity was MR1 independent
(Fig. 3C). We also confirmed that magnetic sorting of MAIT cells
using anti-TCRVa7.2 antibodies did not activate the cells (Fig. S7).
IL-15-induced cytotoxicity was also observed when MAIT cells
were sorted for either MR1 5-OP-RU tetramer+ cells or
TCRVa7.2+CD161hi cells (Fig. S8A–D). This IL-15-induced cyto-
toxicity was more exaggerated in liver MAIT cells than in PB MAIT
cells (Fig. S9). In addition, IL-15-stimulated liver MAIT cells readily
killed liver-derived Huh-7 cells (Fig. S10).

We hypothesized that NK-activating receptors are responsible
for the TCR/MR1-independent, innate-like cytotoxicity of IL-15-
stimulated MAIT cells. To test this hypothesis, we examined
MAIT cells for expression of several NK-activating receptors,
including NKG2C, NKG2D, NKp30, NKp44, NKp46, NKp80, and
DNAM-1. The expression of NKG2D, NKp30, NKp44, and DNAM-1
was significantly increased by IL-15, suggesting that these re-
ceptors may be involved in the induction of innate-like cyto-
toxicity (Fig. 3D, E, and S11A). To formally determine which
receptors mediate the innate-like cytolytic activity of IL-15-
stimulated MAIT cells, we used receptor blocking antibodies. As
shown in Fig. 3F and S11B, cytotoxicity against K562 was
significantly blocked by anti-NKG2D antibodies, but not by an-
tibodies against other NK receptors. We observed the same re-
sults in cytotoxicity assays against Huh-7 cells (Fig. S12). The
crucial role of NKG2D in the innate-like cytotoxicity of MAIT cells
was confirmed using antibody-mediated redirected killing assays
against P815 cells (Fig. 3G). The NKG2D expression induced by IL-
15 was significantly greater in liver MAIT cells than in PB MAIT
cells (Fig. S13).

We investigated the surface expression of ligands for various
NK receptors on K562 and Huh-7 cells. K562 cells expressed li-
gands for NKG2D (MIC-A/B, ULBP-1, ULBP-2/5/6, ULBP-3, ULBP-
4), NKp30 (B7-H6), and DNAM-1 (PVR, Nectin-2), but not for
NKp44 (Fig. S14A). Huh-7 cells expressed some ligands for
NKG2D (ULBP-1, ULBP-2/5/6, ULBP-3, ULBP-4) and DNAM-1 (PVR,
Nectin-2), but not for NKp30 and NKp44 (Fig. S14B). Therefore,
the NKG2D-dependent cytotoxicity of IL-15-stimulated MAIT
cells is not explained by the expression pattern of ligands for NK-
activating receptors on target cells.

We also investigated the roles of granzyme B, Fas ligand
(FasL), and TRAIL in TCR/MR1-independent, innate-like cytotox-
icity of IL-15-stimulated MAIT cells. As shown in Fig. 3H, liver
MAIT cell killing of K562 cells was significantly blocked by Z-
AAD-CMK, a granzyme B inhibitor, and 3,4-dichloroisocoumarin,
a pan-granzyme inhibitor, but not by anti-FasL or anti-TRAIL
blocking antibodies. Taken together, these data demonstrate
that IL-15-stimulated liver MAIT cells kill target cells by NKG2D
ligation via a granzyme B-dependent mechanism in the absence
of TCR/MR1 interactions.

The IL-15-induced innate-like cytotoxicity of liver MAIT cells
involves CD2-mediated conjugate formation
The cytotoxicity of NK and T cells requires conjugate formation
between effector and target cells for the effective delivery of
cytotoxic molecules to target cells.28 To determine whether IL-15
stimulation enhanced liver MAIT cells’ adhesion to target cells,
Journal of Hepatology 2
we examined the expression of CD2 and CD11a, which play
crucial roles in conjugate formation.28,29 As shown in Fig. 4A, IL-
15 significantly increased the expression of CD2 and CD11a in
liver MAIT cells. In K562 cytotoxicity assays, anti-CD2 antibodies,
but not anti-CD11a antibodies, significantly blocked the innate-
like cytotoxicity of IL-15-stimulated liver MAIT cells (Fig. 4B).
Next, we assessed conjugate formation between MAIT and K562
target cells by flow cytometry (Fig. S15). IL-15 stimulation
significantly enhanced conjugation of liver MAIT cells with K562
target cells (Fig. 4C) and this conjugation was significantly
blocked by anti-CD2, but not by anti-CD11a antibodies (Fig. 4D).
These data indicate that the IL-15-induced innate-like cytotox-
icity of liver MAIT cells involves both NKG2D-mediated trig-
gering of cytotoxicity and CD2-mediated conjugation with target
cells.

The PI3K/mTOR pathway plays a critical role in the
IL-15-induced innate-like cytotoxicity of MAIT cells
IL-15 binding to its receptor complex initiates signal trans-
duction via multiple pathways, including JAK/STAT5, Ras/Raf/
MEK, and PI3K/mTOR.30 Therefore, we investigated the signaling
pathways involved in IL-15-induced innate-like cytotoxicity in
MAIT cells. We first confirmed that IL-15 stimulation increased
the phosphorylation of signaling proteins, including STAT5, ERK,
AKT, mTOR, and S6 (Fig. 5A). Next, liver MAIT cells were stimu-
lated by IL-15 following pre-treatment with specific inhibitors
for each signaling pathway: wortmannin, a PI3K inhibitor;
PP242, an mTOR inhibitor; PD98059, a MEK inhibitor; and
pimozide, a STAT5 inhibitor. An IL-15-induced increase in the
frequency of granzyme B+ cells was significantly abrogated by
wortmannin and PP242, but not PD98059 and pimozide,
whereas the increase in the frequency of perforin+ cells was not
abrogated by any inhibitor (Fig. 5B). When the IL-15-induced
upregulation of NKG2D was examined, it was significantly
decreased by wortmannin, PP242, and PD98059 (Fig. 5C). In
addition, wortmannin and PP242 significantly abolished the
innate-like cytotoxicity of IL-15-stimulated MAIT cells (Fig. 5D).
These findings indicate that the PI3K/mTOR pathway plays a
critical role in the IL-15-induced innate-like cytotoxicity of MAIT
cells.

Innate-like cytotoxicity of MAIT cells correlates with liver
injury during AHA
Finally, we examined the phenotypes of MAIT cells from patients
with AHA, who underwent a self-limited course of hepatitis, and
patients with CHB. An IL-15-induced, NKG2D-dependent, innate-
like cytotoxicity of conventional memory CD8+ T cells has been
described in AHA, in which ligands for NKG2D are overexpressed
in liver tissue.25 First, we examined PB MAIT cells. The percent-
age of activated (CD38+HLA-DR+, Fig. 6A) cells was significantly
increased in PB MAIT cells from AHA and CHB patients compared
to HDs. In addition, the percentage of perforin+granzyme B+

(Fig. 6B) cells and the NKG2D expression level (Fig. 6C) were
significantly higher in PB MAIT cells from patients with AHA, but
not in those from patients with CHB, compared to HDs. We also
observed increased expression of NKG2D when liver MAIT cells
from patients with AHA were analyzed (Fig. 6D). Importantly, PB
MAIT cells from patients with AHA exerted innate-like cytotox-
icity against K562 cells whereas those from HDs did not (Fig. 6E).
We found no significant differences in the relative frequency of
MAIT cells among liver CD3+ T cells between HDs and patients
020 vol. 73 j 640–650 645
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with AHA, though the relative frequency of MAIT cells among PB
CD3+ T cells was lower in patients with AHA than HDs (Fig. S16A
and B).
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We next analyzed the relationship between the phenotype
and function of MAIT cells and the degree of hepatocyte injury
among patients with AHA. The percentages of activated
(CD38+HLA-DR+) and perforin+granzyme B+ cells in PB MAIT cells
were both significantly correlated with serum alanine amino-
transferase (ALT) levels, a marker of liver damage (Fig. 6F). The
level of NKG2D expression of PB MAIT cells was also significantly
correlated with serum ALT levels whereas that of liver MAIT cells
had a tendency without significance (Fig. 6F and G). Furthermore,
the innate-like cytolytic activity of PB MAIT cells from patients
with AHA significantly correlated with serum ALT levels (Fig. 6H).

Furthermore, we investigated a relationship between MAIT
cell activation and the clinical course of AHA by examining the
phenotype of MAIT cells from the time of admission (acute stage)
to the convalescent stage. The percentage of activated
(CD38+HLA-DR+) MAIT cells and expression of cytotoxic mole-
cules in MAIT cells were significantly decreased parallel with a
decrease in serum ALT levels, and the expression of NKG2D
significantly decreased in MAIT cells (Fig. 6I). These findings
suggest that MAIT cells exhibit activated and cytotoxic pheno-
types in the acute phase of AHA when liver injury occurs, but
these phenotypes gradually subside in the convalescent phase
when liver injury is resolved.

Altogether, these findings indicate that MAIT cells are acti-
vated and exert increased levels of innate-like cytotoxicity dur-
ing AHA, strongly suggesting that they play a major role in
immunopathological liver injury.

Discussion
Although MAIT cells have been shown to exert cytotoxic activity,
previous studies have focused only on their TCR-dependent
killing activity against cells presenting a bacterial ligand com-
plexed with MR1.17,18 Here, we showed that MAIT cells can ex-
press a TCR/MR1-independent, innate-like cytotoxic activity
when stimulated by IL-15. Given that IL-15 production is
frequently upregulated during viral infection, it is highly likely
that MAIT cells will upregulate NKG2D and exert innate-like
cytotoxic activity during viral infections.

A previous study reported that IL-15 indirectly activates MAIT
cells to produce perforin, granzyme B, and IFN-c only in the
presence of monocytes that produce IL-18 in response to IL-15
stimulation.31 However, the direct effect of IL-15 on MAIT cells
was not previously elucidated. In addition, although TCR-
dependent degranulation of MAIT cells is enhanced by IL-15 in
the presence of monocytes,31 the TCR/MR1-independent,
NKG2D-dependent cytotoxicity of MAIT cells was not examined
previously.

In recent years, NK-activating receptor-mediated, innate-like
killing activity by T cells has been an area of increasing scienti-
fic interest.32–35 Previous studies reported that IL-15 stimulates
conventional memory CD8+ T cells to exhibit TCR-independent
cytotoxicity in an NKG2D- or NKp30-dependent manner.25,32,34

In addition, a recent study showed that triggering of NKG2C
activates CD8+ T cells to release cytotoxic granules in a TCR-
independent manner.36 Invariant NKT cells, a subset of innate-
like T cells that share many characteristics with MAIT cells, also
exert TCR-independent, NKG2D-dependent cytotoxicity.37

Although a previous study reported that NKG2D can co-
stimulate TCR-mediated activation of MAIT cells,38 the role of
NKG2D in MAIT cells in the absence of TCR/MR1 interaction was
unclear. Here, we demonstrated that IL-15-stimulated liver MAIT
020 vol. 73 j 640–650
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cells also exhibit TCR-independent cytotoxicity that is mediated
by NKG2D. Thus, a critical role of NKG2D in TCR-independent
cytotoxic activity is observed in not only conventional CD8+ T
cells, but also innate-like T cells, such as NKT cells and MAIT cells.
However, cytotoxicity-triggering mechanisms differ between
conventional and innate-like T cells. Whereas anti-NKp30 anti-
bodies have been reported to block the innate-like cytotoxicity of
Journal of Hepatology 2
IL-15-stimulated non-MAIT CD8+ T cells,25 they did not block the
cytotoxic activity of IL-15-stimulated MAIT cells in the current
study.

We also demonstrated that CD2-mediated conjugate forma-
tion is an important feature of the innate-like cytotoxicity of IL-
15-stimulated MAIT cells. In NK and T cells, CD2 plays a role in
adhesion to target cells, as well as mediating co-stimulation
020 vol. 73 j 640–650 647
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Fig. 6. Phenotypes and functions of MAIT cells from patients with viral hepatitis. (A–C) PB MAIT cells from HDs (n = 10), patients with AHA (n = 14), and
patients with CHB (n = 8) were analyzed by flow cytometry. The percentage of CD38+HLA-DR+ (A), perforin+granzyme B+ (B) cells among MAIT cells and the
expression level of NKG2D (C) are presented. (D) The expression level of NKG2D was examined in MAIT cells from the liver tissue of patients without viral
hepatitis (n = 6) and those with AHA (n = 4). (E) Magnetically sorted MAIT cells from PBMCs of HDs (n = 10) or patients with AHA (n = 13) were co-cultured with
PKH67-labeled K562 cells for 12 h at a 20:1 E:T ratio and cytotoxicity against K562 cells evaluated. Representative histograms (left) and summary data (right) are
presented. (F) The percentage of CD38+HLA-DR+, perforin+granzyme B+ cells among PB MAIT cells and NKG2D expression levels on PB MAIT cells are plotted
against serum ALT levels in AHA patients (n = 14). (G) NKG2D expression levels of liver MAIT cells are plotted against serum ALT levels in patients with AHA (n =
4). (H) The innate-like cytotoxicity of PB MAIT cells was plotted against serum ALT levels (n = 13). (I) Serum ALT levels, the percentages of CD38+HLA-DR+ and
perforin+granzyme B+ cells among PB MAIT cells, and the NKG2D expression level in PB MAIT cells were examined in patients with AHA (n = 7) in the acute and
convalescent stages. Box plots represent the IQR, with the horizontal line indicating the median. Whiskers extend to the farthest data point within a maximum of
1.5× IQR. Statistical analysis was performed using the Kruskal-Wallis test with Dunns’ multiple comparisons test (A–C), the Mann-Whitney U test (D and E), the
nonparametric Spearman's rank correlation test (F–H) or the Wilcoxon signed-rank test (I). n.s., not significant, *p <0.05, **p <0.01, ***p <0.001, ****p <0.0001. AHA,
acute hepatitis A; ALT, alanine aminotransferase; CHB, chronic hepatitis B; Gzm, granzyme; HDs, heathy donors; MAIT, mucosal-associated invariant T; MFI, mean
fluorescence intensity; PB, peripheral blood; PBMCs, PB mononuclear cells.
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functions.29,39,40 Although it is well-known that lymphocyte
function-associated antigen-1 (LFA-1) expressed on CD8+ T cells
plays a central role in TCR-mediated killing by facilitating tight
adhesion to target cells,41 the K562 cytotoxicity of IL-15-
stimulated MAIT cells was significantly reduced by blocking
CD2, but not by CD11a, an alpha subunit of LFA-1. These data
suggest that the NKG2D-mediated immunological synapse
formed between MAIT cells and their target may differ from the
immunological synapse formed during TCR-mediated killing of
conventional CD8+ T cells.

Furthermore, we found that the downstream signaling mech-
anisms leading to the IL-15-induced innate-like cytotoxicity of
MAITcellsmainly involve the PI3K/mTOR pathway. Although IL-15
activated not only the PI3K/mTOR pathway, but also other path-
ways, including the JAK/STAT5andRas/Raf/MEKpathways, inMAIT
cells, only blockade of the PI3K/mTOR pathway significantly
impaired the innate-like cytotoxicity. In previous studies, mTOR
signaling was also required for the cytotoxicity of IL-15-stimulated
NK cells in mice and humans.42,43 However, the detailed mecha-
nisms underlying IL-15-induced activation ofMAITcellsmay differ
from those of NK cells. In contrast to the results inMAITcells in the
present study, blockade of the Ras/Raf/MEK pathway also reduced
granzyme B expression in NK cells.43 Interestingly, IL-15-induced
upregulation of perforin in MAIT cells was not impaired by inhi-
bition of the PI3K/mTOR pathway. Further studies are required to
clarify the signaling pathways that regulate perforin expression in
MAIT cells following IL-15 stimulation.

It is well established that MAIT cells can exert TCR-dependent
cytolytic activity against cells presenting a bacterial ligand on
MR1.17,18 In addition, IL-7 enhances the TCR/MR1-dependent
killing activity of MAIT cells.44 However, the immunological
significance of their cytolytic activity during infection is not well
understood. Our discovery that IL-15-stimulated MAIT cells
exhibit innate-like cytotoxic activity broadens the spectrum of
targets killed by MAIT cells. Because the innate-like cytotoxicity
depends on NKG2D rather than TCR engagement, host cells
expressing NKG2D ligands can be cytotoxic targets regardless of
antigen presentation by MR1. In this regard, the innate-like
cytotoxicity of MAIT cells may contribute to both host immu-
nopathology and the elimination of virus-infected cells or tumor
cells that highly express NKG2D ligands.45

The IL-15-induced innate-like cytotoxicity of MAIT cells may
be particularly important in microenvironments where NKG2D
ligands are overexpressed. In the case of conventional CD8+ T
cells, TCR-independent, NKG2D-mediated immunopathology by
bystander-activated CD8+ T cells has been reported in mice35 and
humans.32 Similarly, we previously showed that innate-like
cytotoxicity of IL-15-activated bystander memory CD8+ T cells
is associated with liver injury during AHA.25 Given the increased
expression of cytotoxic molecules and NKG2D in MAIT cells from
patients with AHA, and that MAIT cells constitute the major
population of intrahepatic T cells, it is highly probable that these
cells play a role in immunopathological liver injury during AHA.
Indeed, the innate-like cytotoxicity of MAIT cells was signifi-
cantly correlated with serum ALT levels among patients with
AHA. It would be of interest to investigate the role of IL-15-
activated MAIT cells in other diseases associated with dysregu-
lated IL-15 production.

In summary, our results demonstrate that IL-15 activates liver
MAIT cells to exert innate-like cytotoxicity triggered by NKG2D in
Journal of Hepatology 2
the absence of TCR/MR1 engagement. These findings broaden
the spectrum of cellular targets for MAIT cell cytotoxicity and
suggest that MAIT cells may participate in the elimination of
virus-infected cells. Moreover, our data strongly suggest that
MAIT cells can play an immunopathological role in liver diseases
with increased IL-15 expression, such as AHA. In this regard,
MAIT cells may be regulatory targets for the management of liver
diseases.
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