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TAGGEDPA B S T R A C T
Haploidentical hematopoietic stem cell transplantation (haplo-HSCT) with post-transplantation cyclophospha-
mide (PTCy) was performed previously in adults using a nonmyeloablative conditioning regimen and bone mar-
row as a graft source. In an effort to reduce relapse rates, myeloablative conditioning regimens with higher
intensities are now used. We used an intensive daily pharmacokinetic monitoring method for busulfan dosing in
children for effective myeloablation and to reduce toxicity. Here, we report the retrospective results of 34 patients
(median age D110X X11.1 years) who underwent haplo-HSCT with PTCy using a targeted busulfan-based myeloablative
conditioning regimen and peripheral blood as a stem cell source. The donor-type neutrophil engraftment rate
was 97.1%, and the cumulative incidence rates of grade IID111X Xto IV and grade III D112X Xto IV acute and extensive chronic
D113X Xgraft- D114X Xversus-host disease were 38.2%, 5.9%, and 9.1%, respectively. The overall survival and event-free survival
rates, and treatment-related mortality were 85.0%, 79.4%, and 2.9%, respectively. Based on the subgroup analysis
of patients with malignancies (n = 23), the relapse incidence rate was 21.7%. Haplo-HSCT using PTCy with targeted
busulfan-based myeloablative conditioning and peripheral blood as a stem cell source was a safe and promising
therapeutic option for children.

© 2018 Published by Elsevier Inc. on behalf of American Society for Blood and Marrow Transplantation.
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TAGGEDH1INTRODUCTIONTAGGEDEND
Over the past decade, the use of a haploidentical donor in

hematopoietic stem cell transplantation (HSCT) has shown
promise as a therapeutic option for individuals with hemato-
logical malignancies and nonmalignant diseases, particularly
in cases in which an D115X XHLAD116X X-matched donor is not availableD117X X [1].
Haploidentical donors are available for nearly all patients.
Thus, delays in conducting the procedure due to an unrelated
donor search can be avoidedD118X X[2]. The outcomes associated with
the procedure when haploidentical donors and alternative
106

107

108

109

110

111

112
donor sources, such as umbilical cord blood or HLA-mis-
matched unrelated donors, are used are comparable [3].

To address the high incidence rate of treatment-related toxic-
ity caused by the HLA mismatches associated with haploidentical
HSCT (haplo-HSCT) [4,5], 3 different approaches have generally
been used worldwide over the past 2 decadesD119X X[6,7]. TD120X Xcell deple-
tion (TCD) was initially used to prevent lethal graft-versus-host
disease (GVHD) in cases of haplo-HSCT [8]. Previously, its use
was limited because of the associated slow immune reconstitu-
tion, severe infection, and graft failure [9]. However, with recent
technological advancements, ex vivo techniques that remove
cells, such as ab+ T cells and B cells, have been developed and
showed excellent outcomes [10-12]. Moreover, the use of TD121X X
D122X Xcell�adoptive immunotherapy with TCD haplo-HSCT has shown
promising results in more recent times [13,14]. However, the
procedure is expensive and the complex equipment required
makes the performance of the procedure difficult.
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TD123X X D124X XD125X Xcell�replete haploidentical grafts along with various GVHD
prevention methods are preferred currently [6,7]. Of these meth-
ods, post-transplantation cyclophosphamide (PTCy) as a GVHD
prophylaxis is frequently used these days, particularly D126X Xbecause it
leads to decreased incidences of GVHD, and is associated with
promising outcomes [15-17]. Above all, PTCy could be a simpler
method of performing haplo-HSCT than TCD, without the need
for equipment and supplies for cell depletion.

Previously, haplo-HSCT with PTCy was performed in adults
using a nonmyeloablative conditioning regimen and bone mar-
row as a graft sourceD127X X [18]. Acceptable GVHD and treatment-
related mortality (TRM) were encouraging; however, the rela-
tively higher rates of relapse were a cause of concern [19]. In
an effort to reduce relapse rates, the use of myeloablative con-
ditioning regimens with higher intensities using busulfan [20]
or total body irradiation (TBI) [21,22] was investigated in
adults, and showed promising results. Given that pediatric
patients have higher bone marrow cellularity [23-25], and are
more vulnerable to irradiation-associated late adverse effects,
an effective myeloablative conditioning regimen without TBI
may be preferred in children.

Unfortunately, there D128X Xare insufficient data on haplo-HSCT
with PTCy in children, and the efficiency and safety of the pro-
cedure, as estimated by previously conducted studies, are diffi-
cult to compare due to the small number of patients and
various conditioning regimens [26-32].

In the present study, we used an intensive daily pharmaco-
kinetic (PK) monitoring method for busulfan dosing and opti-
mized the intensity of the conditioning regimen by calculating
the total exposure of busulfan [33-36]. Here, we applied this
targeted-busulfan method using the daily PK monitoring of
haplo-HSCT using PTCy in pediatric patients, and the safety
and outcomes were evaluated.
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Study Population and Study Design
We retrospectively studied 34 patients who underwent HSCT using a

uniform targeted busulfan-based myeloablative conditioning regimen at
the Seoul National University Children’s Hospital from February 2014 to
April 2017. Patients who were below D1 2 9X X21 years of age when they under-
went stem cell transplantation were included. This study was approved
by the Institutional Review Board of the Seoul National University Hospi-
tal (H-1107-024-368).

Donor D130X XSelection
For the donor selection, HLA-A, HLA-B, HLA-C, and HLA-DRB1 matching

was confirmed through a high-resolution molecular method in all patients
and donors, and DNA samples from the donors and patients were tested for
the presence or absence of 16 killerD131X Xcell immunoglobulin-like receptor (KIR)
genes using KIR gene-specific primer extension and bead array hybridization
[37]. Donors with the KIR B haplotype were given preference [38].

Transplantation Protocol
The haplo-HSCT conditioning regimen comprised busulfan, fludarabine

(40 mg/m2 i.v. once daily D132X XD133X Xfrom days D134X X�8 to D135X X�4), and cyclophosphamide
(14.5 mg/kg i.v. once daily D136X Xfrom days D137X X�3 to D138X X�2). Busulfan (120 mg/m2 for
patients D139X X�1 year of age and 80 mg/m2 for patients D140X X<D141X X1 year of age) was admin-
istered as a starter dose on day D142X X�8 and administered once daily thereafter. A
subsequent targeted dose of busulfan was analyzed according to the thera-
peutic drug monitoring (TDM) results from days D143X X�7 to D144X X�5D145X X[33,35].

The total target area under the curve (AUC) of busulfan was set at 74,000
to 76,000 mg£ h/L according to our previous data. The daily target AUC was
18,500 to 19,000 mg£ h/L, and the target AUC on the fourth day was calcu-
lated as: (median value of the total target AUC D146X X� cumulative AUC during
3 days) mg£ h/L/day D147X X[35,36].

We proceeded to HSCT if the result of a pre-HSCT bone marrow
examination pointed to morphologically complete remission (CR),
regardless of the minimal residual disease status. All patients received
an infusion of granulocyte colony-stimulating factor (10 D 14 8X Xmg/kg s.c. once
daily D 14 9X X, from days D 1 5 0X X�3 to day 0) mobilized peripheral blood stem cells
from the haploidentical donors.
GVHD Prophylaxis and Supportive Care
Patients were also treated with GVHD prophylaxis for haplo-HSCT with

PTCy (50 mg/kg i.v. once daily D151X Xvia IV on days 3 and 4), tacrolimus (from day
5), and mycophenolate mofetil (from days 5 to 35). Tacrolimus was generally
administered until 8 months after HSCT for malignant diseases and until 1
year after for nonmalignant diseases. Prophylactic treatments for veno-occlu-
sive disease (VOD) and infections were administered according to our institu-
tional guidelines for HSCT D152X X[35].

Engraftment, Toxicities, and Minimal Residual Disease
Neutrophil engraftment was defined as the first of 3 consecutive days on

which the absolute neutrophil count was >D153X X.5£ 109/L, and platelet recovery
was defined as the day on which the platelet count was >D154X X20£ 109/L, without
platelet transfusions in the prior 7 days. Bone marrow examination was per-
formed at 1, 3, 6, and 12 months after HSCT, and hematopoietic chimerism
was evaluated through the molecular analysis of short tandem repeat regions.
Regimen-related toxicity except GVHD, up to 42 days after transplantation,
was graded according to the National Cancer Institute Common Toxicity Cri-
teria (v4.0). Minimal residual disease (MRD) detection before transplantation
was performed using 4-color flow cytometry, and the cutoff used was .01%.

Statistical Analyses
The cumulative incidences (CIs) of neutrophil and platelet engraftment

were evaluated with death before engraftment as the competing risk, and the
CIs of acute and chronic GVHD were evaluated with graft failure, relapse, and
TRM as the competing risks. The relapse incidence and TRM were also evalu-
ated using a CI curve, with all deaths without relapse and relapse as the com-
peting risks, respectively. Events were defined as relapse, TRM, or graft
failure. The overall survival (OS) and event-free survival (EFS) were analyzed
using the KaplanD155X X-Meier method. The difference in the survival rates was
investigated through a log-rank test. A P value <D156X X.05 was considered statisti-
cally significant. Statistical analyses were conducted using R version 3.2.2 (R
Project for Statistical Computing, Vienna, Austria) and SPSS 23.0 (IBM Corp,
Armonk, NY).

TAGGEDH1RESULTSTAGGEDEND
Characteristics of the Patients

The clinical characteristics of the patients are summarized
in Table 1. The median age at the time of HSCT was 11.1 years.
Of the 34 patients, 23 patients had malignanciesD157X X D158X Xand 11
patients had nonmalignant disease. All patients received
peripheral blood as the stem cell source. A majority of the
donors were parents of the patients, and 61.8% of donors had
the KIR B haplotype. Of the 23 patients with malignancies, 16
had a CR1 status and 7 had a status above CR2 before HSCT.
There was no refractory case. Of the 21 patients with acute leu-
kemia, only 2 were MRDD159X X negative. Of the 19 MRD-positive
patients, the flow cytometry results of 6 patients suggested the
presence of leukemia cells or regenerating lymphoid or mye-
loid cells.

The median follow-up period was 26 D160X X(range, 1 D161X X to 50)
monthsD162X X, and the corresponding values for those with malig-
nant diseases and nonmalignant diseases were 24 D163X X(range, 4D164X Xto
47) monthsD165X Xand 28 D166X X(range, 1 D167X Xto 50) months D168X X, respectively.

Targeted Busulfan
The AUC of the first day of busulfan was 21,884 D169X X(range,

19,929D170X Xto 40,619) mg£ h/L, and the coefficient of variance was
26.4%. Consequently, the median AUC value of the total infused
busulfan was 74,078 D171X X(range, 67,302D172X X to 78,478) mg£ h/L, of
which the coefficient of variance was 2.7%. Using TDM and
daily dose adjustment, an acceptable total busulfan exposure
range could be achieved, although the AUC for busulfan on the
first day varied widely.

Engraftment
The median number of neutrophil and platelet engraftment

days were 15 (range, 13 D173X Xto 22D174X X) D175X XD176X Xand 29 (range, 13 D177X Xto 87)D178X X, respec-
tively. The CI rates of neutrophil and platelet engraftment were
97.1% and 96.6%, respectively. Primary engraftment failure
occurred in 1 patient with severe congenital neutropenia who



Table 1
Patient D18X XD19X XCharacteristics (N = 34).

D20X X

D21X XAge, yrD22X X 11.1 (.9D23X XD24X X-20.3)
Sex D25X X

Male 21 (61.8 D26X X)
Female 13 (38.2 D27X X)

D28X XBSA, m2
D29X X 1.19 (.45 D30X XD31X X-2.13)

D32X XBody weight D33X X 32.2 (9.7 D34X XD35X X-91.3)
DiagnosisD36X X

Acute lymphoblastic leukemia 11 (32.4 D37X X)
Acute myeloid leukemia 7 (20.6 D38X X)
Mixed phenotype acute leukemia 3 (8.8 D39X X)
Other malignancies* 2 (5.9 D40X X)
Other nonmalignant diseasesy 11 (32.4 D41X X)

Donor D42X XD43X XD44X X
Parents 30 (88.2 D45X X)
Siblings 4 (11.8 D46X X)

Donor-to-recipient sex direction D47X X
Male!Male 14 (41.2 D48X X)
Female!Male 7 (20.6 D49X X)
Female! Female 9 (26.5 D50X X)
Male! Female 4 (11.8 D51X X)

Donor KIR haplotype D52X X
A D53X X 11 (32.4 D54X X)
B D55X X 21 (61.8 D56X X)
N/D 2 (5.9 D57X X)

CMV serology (donor/recipient)D58X X
Positive/Positive 32 (94.1 D59X X)
Positive/Negative 2 (5.9 D60X X)

Disease status D61X X
CR1 16 (47.1 D62X X)
�CR2 7 (20.6 D63X X)
N/A 11 (32.4 D64X X)

Previous transplantation D65X X
No 30 (88.2 D66X X)
Yes (�1) 4 (11.8 D67X X)

Infused busulfan AUC, mg x h/LD68X X 74,078 (67,302 D69X XD70X X-78,478)
D71X XInfused TNC, x108/kg D72X X 14.1 (9.2 D73X XD74X X-20.8)
D75X XInfused CD34+ cells, x106/kg D76X X 7.3 (4.5 D77X XD78X X-23.6)

Data are presented as median (range) or n (%).
D79X XBSA D80X Xindicates body surface area; D81X XD82X XD83X XN/D, not done; D84X XN/A, not applicable; D85X XTNC, total
nuclear cells.
* One case of Ewing sarcoma D86X Xand 1 case of Hodgkin D87X Xdisease were included.
y Four cases of adrenoleukodystrophy, 2 of Krabbe disease, 1 of congenital

neutropenia, 1 of Wiskott-Aldrich syndrome, 1 of autoimmune lymphoproli-
ferative syndrome, 1 of beta-thalassemia, and 1 of familial hemophagocytic
lymphohistiocytosis were included.

ARTICLE IN PRESS
K.T. Hong et al. / Biol Blood Marrow Transplant&& (2018)&&&�&&& 3

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376
received a second haplo-HSCT from the same donor (father)
134 days after the first haplo-HSCT. Neutrophil and platelet
engraftment were achieved on days 13 and 24, respectively,
and the patient was still disease-free at the last follow-up, 9
months from the second haplo-HSCT.

Complications and Neurological Status
The presence of VOD was observed in 7 D179X X(20.6%) cases, and

this was resolved successfully using antithrombin III and/or tis-
sue plasminogen activator. There was no statistically signifi-
cant difference in the first-day busulfan AUC (VOD groupD180X X:
median 22,629 D181X X[range, 12,929D182X X to 40,619] mg£ h/L; non-VOD
groupD183X X: median 21,383 mg£ h/L [range, 15,728D184X X to 38,921];
P = .306)D185X X or the total busulfan AUC (VOD groupD186X X: median
73,407 mg£ h/L [range, 72,400D187X X to 76,816]; non-VOD groupD188X X:
median 74,086 D189X X[range, 67,302D190X X to 78,478] mg£ h/L; P = .800)
between both groups. Furthermore, the pretransplant ferritin
levels were not different between the groups (VOD groupD191X X:
median 481 D192X X[range, 8D193X Xto 2D194X X052] ng/mL; non-VOD groupD195X X: median
1D196X X157 D197X X[range, 12 D198X X to 14,391] ng/mL; P = .356). The elevation of
aspartate D199X Xor alanine aminotransferase levels and total bilirubin
levels of at least grade 3 severity were shown in 23.5% and
5.9% of the patients, respectively. The incidence of hemorrhagic
cystitis with severity higher than grade 3 was 35.3% (12
patients), and the median onset time from transplantation and
the duration were 32 D200X X(range, 5D201X Xto 40) daysD202X Xand 12 D203X X(range 3D204X Xto
50) daysD205X X, respectively; this was successfully managed with
massive intravenous hydration.

Cytomegalovirus (CMV) antigenemia occurred in 76.5% of
the patients, and according to our institutional guideline for
CMV management, half-dose ganciclovir preemptive therapy
(5 mg/kg once daily, 6 days/week) was administered to
patients with CMV antigenemia levels <10/200,000 cells [39].
The requirement of ganciclovir induction therapy was
observed in 8 D206X X(23.5%) patients with CMV antigenemia levels
�10/200,000 cells. None of the patients had CMV disease.

With respect to the neurological status of 6 patients with
adrenoleukodystrophy (n = 4, with pre-HSCT Loes scoresD207X Xof 0,
3.5, 8 and 12, respectively) [40] or Krabbe disease (n = 2), 5 pre-
sented with no significant changes in the brain magnetic reso-
nance imaging (MRI) scans taken 1 year after HSCT. The
neurological examinations at the last follow-up were compara-
ble to those before haplo-HSCT. Unfortunately, the patient
with advanced adrenoleukodystrophy who previously had
progressive visual and hearing impairment experienced a
rapid deterioration of visual and hearing function during the
conditioning period. Afterward D208X X, no further neurological deteri-
oration occurred after HSCT.
D209X XGraft-Versus-Host Disease
The CI rates of grade II D210X Xto IV and grade IIID211X Xto IV acute GVHD

were 38.2% and 5.9%, respectively (Figure 1A). Two patients
had grade III GVHD, 1 with stage 3 skin involvement and stage
2 lower gastrointestinal involvement and the other with stage
3 lower gastrointestinal tract involvement; none of the
patients had grade IV GVHD. The signs and symptoms of acute
GVHD in all patients were resolved by the use of systemic cor-
ticosteroids. The CI of extensive chronic GVHD was 9.1%
(Figure 1B). The organs involved were the skin in 1 patientD212X X;
skin and liver in D213X X1 patientD214X X; and skin, mouth and lung in a
D215X X1 patient. Cyclosporine and prednisolone [41] were used in
2 patients for 7 and 12 months, respectively, and for the
remaining patient who had post-transplant thrombotic micro-
angiopathy and could not be treated with cyclosporine, myco-
phenolate mofetil plus prednisolone was used for 8 months.
The resolution of chronic GVHDwas achieved in all patients.

When the patients were categorized by age at diagnosis
(<10 years of age or �10 years of age), there was no statisti-
cally significant difference in the CI rates of grade II D216X X to IV
(37.5% versus 25.0D217X X%; P = .308) and grade IIID218X X to IV acute GVHD
(6.3% versus 5.0 D219X X%; P = .857), and extensive chronic GVHD
(12.0% versus 5.0D220X X%; P = .316) between the younger (n = 16) and
older groups.
Relapse
To compare the relapse incidence rates, we performed a

subgroup analysis of patients with malignant diseases (n = 23).
The relapse incidence rate at 2 years was 21.7% (Figure 1D).
The diagnoses and disease status before haplo-HSCT of the
relapse patients were relapsed acute myelogenous D221X X leukemia
(CR2, MRDD222X Xpositive), therapy-related acute D223X Xmyelogenous leu-
kemia (CR1, MRD-negative), D224X XBD225X Xcell acute D226X Xlymphoblastic leuke-
mia with MLL rearrangement (CR1, MRDD227X Xpositive), D228X XT cellD229X Xacute
D230X Xlymphoblastic leukemia with central nervous system involve-
ment (CR1, MRDD231X X positive), and relapsed mixed-phenotype
acute leukemia after unrelated HSCT (CR2, MRDD232X Xpositive). The



Figure 1. The D1X XCIs D2X Xof (A) grade II D3X Xto IV and grade III D4X Xto IV acute D5X XGVHD D6X Xand (B)
extensive chronic GVHD D7X Xwere 38.2%, 5.9%, and 9.1%, respectively. (C) The CI
rate of D8X XTRM was 2.9% D9X X. (D) The relapse incidence rate of the patients with
malignancy (n = 23) was 21.7% D10X X.
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median number of days to relapse from HSCT was 103 D233X X(range,
60 D234X Xto 138) daysD235X X.

In 2 of the relapse patients, CR was achieved by the admin-
istration of donor lymphocyte infusion (DLI), which was com-
bined with chemotherapy at firstD236X X and was subsequently
conducted alone due to poor bone marrow recovery. In the
first course of DLI, a target dose of .5£ 106/kg of CD3+ cells was
infused. If there was no evidence of GVHD development, the
subsequent dose of DLI was increased to 1.0£ 106/kg of CD3+D237X X
cells and was finally increased up to 5.0£ 106/kg of CD3+D238X Xcells,
every 3 or 4 weeks. A patient who received DLI 15 times devel-
oped chronic GVHD and was still alive without disease at
34 months from relapse, while the other patient experienced
relapse after receiving DLI 5 times.

Survival and Treatment- D239X XRelated Mortality
The EFS rate and OS rate at 2 years were 79.4 § 6.9% and

85.0 § 6.2%, respectively (Figure 2A). In the subgroup analysis
of the patients with malignant diseases (n = 23), the EFS and
OS rates at 2 years were 78.3 § D240X X8.6% and 82.1 § D241X X8.1%, respec-
tively (Figure 2B), and the corresponding values for patients
with nonmalignant diseases (n = 11) were 81.8 § D242X X11.6% and
90.9 § D243X X8.7%, respectively (Figure 2C).

In the subgroup analysis of patients with malignant dis-
eases (n = 23), survival outcomes were not affected by KIR hap-
lotype B donors (n = 16) compared with cases with haplotype
A donors (EFS rateD244X X: 75.0 § D245X X10.8% versus 85.7 § D246X X13.2%, P = .582;
OS rateD247X X: 73.1 § D248X X11.3% versus 100%, P = .148, respectively).

Of 4 patients who received previous HSCT (2 allogeneic and
2 autologous), 3 patients were alive without disease at the last
follow-up, whereas 1 patient experienced relapse after
136 days from haplo-HSCT and died.

The CI of TRM at 2 years was 2.9% (1 of 34 patientsD249X X)
(Figure 1C). One patient with recurrent Epstein-Barr
D250X Xvirus�D251X Xassociated hemophagocytic lymphohistiocytosis who
underwent haplo-HSCT died of hepatic failure. Initially, this
patient had VOD, which was improving; however, the patient
subsequently died of Epstein-Barr virus�D252X Xinduced fulminant
hepatitis.

TAGGEDH1DISCUSSIONTAGGEDEND
This retrospective study aimed to assess the efficacy and

safety of haplo-HSCT in children using PTCy, along with a tar-
geted busulfan-based myeloablative conditioning regimen.
Based on our analysis, the EFS and OS rates associated with
haplo-HSCT with PTCy were favorable, indicating promising
survival rates among children who received haplo-HSCT com-
pared with the results reported in previous studies [27,29-32].
Furthermore, incidences of GVHD, TRM, and other transplanta-
tion-related toxicities were acceptable, although all our
patients received a busulfan-based myeloablative conditioning
regimen and peripheral blood as a graft source.

One reason for the favorable outcome could be the use of
targeted busulfan, which is a drug well-known for its inter-
and intravariable pharmacokinetics; therefore, adequate dos-
ing is important [36]. Given that children have a higher num-
ber of stem cells than adults (children have a higher
proportion of red than yellow bone marrow while adults have
a higher proportion of yellow bone marrow) [42], a higher con-
centration of busulfan may need to be used as a myeloablative
regimen to obtain effective niches for an increased hematopoi-
etic competition between donor and residual recipient stem
cells [25]. Recently, similar nonrelapse mortality was observed
in adult patients who underwent myeloablative haplo-HSCT
with a busulfan-based regimen, when compared with those
who received a nonmyeloablative conditioning regimen [20].
To improve the outcomes in pediatric patients using a busul-
fan-based myeloablative conditioning regimen, we optimized
the busulfan exposure of each patient using daily TDM, which
already showed a favorable clinical outcome [35], and accept-
able busulfan pharmacokinetic results [34]. To the best of our
knowledge, the present study includes the largest number of
pediatric patients who underwent haplo-HSCT using PTCy
along with a targeted busulfan-based myeloablative condition-
ing regimen.



Figure 2. (A) The D11X XEFS D12X Xrates and D13X XOSD14X Xrates at the time of the median follow-up of
all cases were 79.4 § 6.9% and 85.0 § 6.2%, respectively D15X X. (B) In the subgroup
analysis of cases with malignant disease (n = 23), the EFS rate and OS rate
were 78.3 § 8.6% and 82.1 § 8.1%, respectively D16X X, and (C) the corresponding val-
ues in cases with nonmalignant diseases (n = 11) were 81.8 § 11.6% and 90.9
§ 8.7%, respectively D17X X.
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All patients, except 1, underwent neutrophil and platelet
engraftment. Although the timing of the engraftment of the
haplo-HSCT using PTCy was relatively delayed compared with
that of related or unrelated HLA-matched HSCT [43], the range
of the engraftment time was predictable without any episode
of prolonged unexpected neutropenia; thus, patients could be
safely protected against opportunistic infections.

Higher GVHD occurrence rates and TRM were reported in
younger children who underwent haplo-HSCT with PTCy [27];
however, our results showed acceptable rates of GVHD and
TRM, and a majority of the patients with events experienced
disease progression rather than TRM or GVHD-related prob-
lems. Furthermore, the use of peripheral blood as a stem cell
source did not increase the risk of chronic GVHD development
in our study compared with recent adult data [44]. Neverthe-
less, a relatively higher incidence of VOD was observed. There-
fore, haplo-HSCT with PTCy with a myeloablative conditioning
regimen should be performed cautiously in patients with high-
risk factors for VOD.

The use of DLI with haplo-HSCT may be helpful in chil-
dren with advanced leukemia [45]. Although we observed
only 2 cases of DLI after relapse, 1 patient achieved a long-
term CR status. This could be a useful tool after haplo-HSCT
to prevent relapse in high-risk patients as well as to treat
relapse in patients who have difficulties in receiving addi-
tional cytotoxic chemotherapy. Moreover, relapse occurred
relatively earlier, as observed in this study, at a median of
103 days from transplantation (range, 60 D 25 3X X to 138 days). This
could be attributed to the high-risk disease characteristics
of relapse patients, as well as the fact that the MRD status
may have been underestimated by 4-color flow cytometry.
Further efforts, such as planned DLI [26] or intensified che-
motherapy in pre-HSCT MRD-positive patients before HSCT
[46], may be needed in the future.

In addition, 6 patients with inborn errors of metabolism D254X X,
such as adrenoleukodystrophy or Krabbe disease, received
haplo-HSCT. Generally, the search for a compatible stem cell
donor may not prove productive because of the rapid disease
progression in the central nervous system after diagnosis. Pier-
pont et al. [47] demonstrated that higher baseline MRI severity
scores among cerebral adrenoleukodystrophy patients were
associated with greater neurocognitive decline after HSCT,
indicating that performing HSCT earlier, even before disease
evidence is observed on MRI scans or before the occurrence of
neurological problems, could be recommended. Thus, haplo-
HSCT may be a beneficial therapeutic option under these cir-
cumstances. As of the end date of the study, all the patients
with inborn errors of metabolism D255X Xwere alive without severe
transplantation-related complications.

However, our study has several limitations associated with
its retrospective design, relatively small sample size nature,
and insufficient follow-up time to evaluate long-term
outcomes.

In conclusion, haplo-HSCT using PTCy, along with a tar-
geted busulfan-based myeloablative conditioning regimen and
peripheral blood as a stem cell source, may be a safe and prom-
ising therapeutic option for children with hematological malig-
nancies and nonmalignant diseases.
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